Anion-catalyzed NO2 dissolution on aqueous microdroplets: A new source of HONO?

Akihiro Yabushita[1]; Shinichi Enami[2]; Masahiro Kawasaki[1]; Michael R. Hoffmann[3]; Agustin J. Colussi[3]

[1] Kyoto Univ.; [2] CALTECH; [3] Caltech

NO_X have been recognized as crucial components of photochemical smog, while atmospheric chemical models still fail to correctly predict OH/HO concentrations under NO_X-rich conditions [Kanaya et al. JGR 2008, 113, D06301]. This deficiency may be due, in part, to the still uncertain rates and mechanism for the reactive dissolution of NO₂ (2NO₂ + H₂O = NO₃⁻ + H⁺ + HONO) in fog and aerosol droplets. Here we report experiments in which *in situ* ion production on the surface of aqueous microdroplets exposed to NO₂(g) for ~1 ms is monitored by nebulizer-assisted online electrospray mass spectrometry [Enami et al. JPCA 2007, 111, 13032]. NO₂ does not dissolve in deionized pure water (product ion signals below detection limit) but readily yields NO₃⁻ on aqueous NaX (X = Cl, Br, I) microdroplets. NO₃⁻ signals vary non-monotonically with electrolyte concentration yielding peak NO₂ uptake coefficients gamma_{max} ~10⁻⁴ at [NaX] ~1 mM that are 10³ larger than in neat water. By showing that gamma is strongly modulated by electrolyte content, these results seem to resolve outstanding discrepancies between previous measurements in neat water vs. NaCl-seeded clouds. In order to reveal the detail mechanism, the generation of NO₃⁻ in various aqueous dicarboxylic acids microdroplets over the pH range from 3 to 9 has been studied further. We found the evidences of the H⁺/NO₃⁻/HONO(g) formations during the short (~1 ms) NO₂(g) exposure on the dicarboxylic acids microdroplets surfaces. Our reaction mechanism suggests that atmospheric HONO(g) emission may be controlled by electrolyte concentrations in fogs/clouds/aerosols droplets. Therefore, time dependent ionic composition as well as specific surface areas of fogs/clouds/aerosols droplets. Therefore, time dependent ionic composition swill be discussed.