J248-009 Room: 303 Time: May 17 16:30-16:45

Perovskite and post perovskite phase relation in the MgSiO₃-Al₂O₃ system

Jun Tsuchiya[1]; Taku Tsuchiya[2]

[1] none; [2] GRC, Ehime Univ

It has been believed that a few mol% Al_2O_3 would dissolve into $(Mg,Fe)SiO_3$ in the Earth's lower mantle. Existence of aluminum in $MgSiO_3$ is thought to change the volumes, elasticity and stability relations of perovskite (Pv) and post perovskite (pPV). The phase diagram of Al-bearing $MgSiO_3$ reported both experimentally and theoretically shows that Al drastically increases the pPV transition pressures with significant Pv+pPV co-existence regions. The large two phase loops are however irreconcilable to the transition seismically detectable as the D" discontinuity. Here we investigated finite temperature high-pressure phase equilibria in the $MgSiO_3$ - Al_2O_3 system based on the density functional first principles method with multiple configuration sampling of solid solution structures. Through the calculations, interesting structural relationship between Pv and $Rh_2O_3(II)$ was also discovered.

Research supported by the Ehime Univ Project Fund and in part by JSPS.