Japan Geoscience Union Meeting 2010

(May 23-28 2010 at Makuhari, Chiba, Japan)

©2009. Japan Geoscience Union. All Rights Reserved.

AASO01-P08 Room: Convention Hall Time: May 27 17:15-18:45

Analyses of the diurnal variation of nitrogen oxides in the remote area.

Akie Yuba^{1*}, Toshiki Sera¹, Yasuhiro Sadanaga¹, Akinori Takami², Shirou Hatakeyama³, Norimichi Takenaka¹, Hiroshi Bandow¹

¹Osaka Prefecture University, ²NIES, ³Tokyo Univ.of Agriculture and Technology

Nitrogen oxides consist of NO, NO₂, NO₃, HONO, N₂O₅, gaseous nitric acid (HNO₃), particulate nitrate (NO₃(p)) and so on. NO reacts with oxidants and gives NO₂. The other N-containing species are generated by the reaction of NO₂ and oxidants. Nitrogen oxides have various characteristics; NO₂ is a precursor of O₃. HNO₃ and NO₃ (p) are stable against photochemical degradation, making them transportable over long distances so that HNO₃ and NO₃ (p) being adverse effects to the environment over larger regions. We have been observing total odd nitrogen species (NO_y), HNO₃ and NO₃(p) at the Cape Hedo, Okinawa, Japan. The diurnal variations of NO₃, HNO₃ and NO₃ (p) from March to December were analyzed to reveal the effect of local emission and photochemistry. We discuss the data from March to December in 2 008. NO₃ and HNO₃ concentrations had peak values at 10:00 and 14:00, respectively, while NO₃ (p) concentration minimized at 14:00. We analyzed the relationship between the meteorological conditions and the diurnal variations of NO_v, HNO₃ and NO₃ (p). The diurnal variation of HNO₃ was independent of the seasonal variations and the origins of air mass. The diurnal variation of HNO₃ in each month had the same pattern. The variations of HNO₃ concentrations were more sensitive to the local effect than the long range transport. This suggests HNO₃ photochemical production in the local regions. We also analyzed the relationship between wind velocity and the diurnal variations of HNO₃ and NO₃ (p). The concentration of the sea salt particles increases with the increase of wind velocity. The heterogeneous reaction of HNO₃ with sea salt particle can be promoted when the wind velocity is large.

Keywords: Diurnal variation, Nitrogen oxides, Gaseous nitric acid, Particulte nitrate, Remote area