Japan Geoscience Union Meeting 2010

(May 23-28 2010 at Makuhari, Chiba, Japan)

©2009. Japan Geoscience Union. All Rights Reserved.

ACG032-15

会場:展示ホール7別室2

時間: 5月26日13:58-14:11

過去2.2万年にわたるチリ沖海底堆積物に記録された²³⁰Th放射能を利用した生物起源粒子フラックスの変動

Changes in 230Th-normalized flux of biogenic components recorded in the central Chilean margin over the past 22,000 year

原田 尚美^{1*}, 川上創¹, C. B. Lange², 松本剛³, 宮下航³

Naomi Harada^{1*}, Hajime Kawakami¹, C. B. Lange², Takeshi Matsumoto³, Wataru Miyashita³

¹独立行政法人海洋研究開発機構, ²コンセプシオン大学, ³琉球大学

¹JAMSTEC, ²University of Concepcion, ³University of the Ryukyu

During glacial periods, strengthened productivity and an efficient biological pump in the North Pacific, Equatorial Pacific, and Southern Oceans may have contributed to reduce atmospheric CO₂ partial pressures (pCO₂). However, whether marine productivity was high during glacial periods at every region, especially the Last Glacial Maximum (LGM), and whether intensification of marine productivity resulted in a decrease of atmospheric pCO₂, are still controversial. The aim of this study was to identify changes in the ²³⁰Th-normalized export flux of biogenic components, namely total organic carbon (TOC), CaCO₃, and biogenic opal, which are commonly utilized as proxies for paleoproductivity recorded in a sediment core covering the past 22,000 years collected from the central Chilean margin (36S). The ²³⁰Th-normalized fluxes of TOC, CaCO₃, and biogenic opal were relatively low from 22,000 cal. yr BP to 15,000 cal. yr BP, including the Last Glacial Maximum (LGM). Marine productivity would decrease during this period due to the poor nutrient condition of the surface water, although this study site might had affected by the Antarctic Circumpolar Current (ACC), associated with the equatorward migration of the Southern Westerlies. From 15,0 00 cal. yr BP to 10,000 cal. yr BP, the ²³⁰Th-normalized flux of biogenic components increased. It seems likely that marine productivity increased and main nutrient source for maintaining marine productivity gradually shifted from the ACC to the coastal upwelling, associated with gradual southward migration of the Southern Westerlies. During the Holocene, especially after 8000 cal. yr BP, ²³⁰Th-normalized flux of TOC and biogenic opal increased, while that of CaCO₃was almost same level as those during the LGM. The result of ²³⁰Th-normalized flux of TOC and biogenic opal suggests that marine productivity at this study site became the highest at 13,000 cal. yr BP during the deglaciation and the lowest at the LGM throughout the past 22,000 yr. It implies that the low marine productivity at mid latitude off Chile area did not contribute to reduce the atmospheric pCO₂during the LGM.

キーワード:チリ沖,堆積物,トリウム,生物起源粒子,最終氷期最寒期

Keywords: Off Chile, Sediment, 230Th, Biogenic components, LGM