MAGDAS／CPMN観測点で観測される昼側Pi 2 地磁気脈動の特性

Characteristics of Dayside Pi 2 Pulsations Observed MAGDAS／CPMN Stations

坂井 美菜 ${ }^{1 *}$ ，堀川 直子 ${ }^{1}$ ，魚住 禎司 ${ }^{2}$ ，阿部 修司 ${ }^{2}$ ，湯元 清文 ${ }^{2}$

Mina Sakai ${ }^{1 *}$ ，Naoko Horikawa ${ }^{1}$ ，Teiji Uozumi ${ }^{2}$ ，Shuji Abe ${ }^{2}$ ，Kiyohumi Yumoto ${ }^{2}$
＇九州大学大学院理学府地球惑星科学専攻，${ }^{2}$ 九州大学宙空環境研究センター

${ }^{1}$ Department of Earth and Planetary Sci．，${ }^{2}$ Space Environ．Res．Center，Kyushu Univ．
At the onset of magnetospheric substorms，impulsive hydromagnetic oscillations with periods of 4 0 ？ 150 sec ，so called Pi 2 magnetic pulsations，occur globally in the magnetosphere．Pi 2 pulsations have been studied since 1950s and phenomenological description of Pi 2 pulsations is being established．However，the studies are almost concerning nightside Pi 2 pulsations and dayside Pi 2 pulsations have not been studied so much，because in dayside，Pi 2 pulsations may fail to observe caused by Pc 3 pulsations which have the same period range as Pi 2 pulsations（Olson．，1999），and the amplitudes of high latitude Pi 2 pulsations are smaller than that in nightside（Li et al．，2000）． We aim to develop the morphology of dayside Pi 2 pulsations globally and give the solution of the generation and propagation mechanisms of Pi 2 pulsations．
Space Environment Research Center，Kyushu University，has MAGDAS／CPMN（MAGnetic Data Acquisition System in the Circum－pan Pacific Magnetometer Network）stations along the 210－ degree magnetic meridian．In the present paper，we examine latitudinal and local time dependence of H －component amplitude of Pi 2 pulsations occurred in dayside（ $06-18 \mathrm{LT}$ ）using 21 stations（GM Lat．＝－45．72－69．92）along 210－degree magnetic meridian，where data from ANC station（G．lat．＝－11． 77, G．lon．$=-77.15$ ，dip lat．$=0.74$ ）are used to confirm nightside Pi 2 pulsations statistically．It is found that the dayside Pi 2 shows a peak amplitude at the magnetic equator in the midday（10－14 LT），other peaks at mid－and high－latitude（GM Lat．$=60-70$ ）in the morning（ $06-12 \mathrm{LT}$ ）and at mid latitude（GM Lat．$=50$ ）after the sunrise 08－10LT．We will also analyze the D－component dayside Pi 2 same as the H －component．

