

PEM023-02

Room: 301A

Time: May 28 09:15-09:30

Effect of the solar-wind proton entry into the deepest lunar wake

Masaki N Nishino^{1*}, Masaki Fujimoto¹, Yoshifumi Saito¹, Shoichiro Yokota¹, Yoshiya Kasahara², Yoshiharu Omura³, Yoshitaka Goto², Kozo Hashimoto³, Atsushi Kumamoto⁴, Takayuki Ono⁴, Hideo Tsunakawa⁵, Masaki Matsushima⁵, Futoshi Takahashi⁵, Hidetoshi Shibuya⁶, Hisayoshi Shimizu⁷, Toshio Terasawa⁸

¹ISAS/JAXA, ²Kanazawa University, ³RISH, Kyoto University, ⁴Tohoku University, ⁵Tokyo Institute of Technology, ⁶Kumamoto University, ⁷ERI, University of Tokyo, ⁸ICRR, University of Tokyo

We study effect of the solar wind (SW) proton entry deep into the near-Moon wake that was recently discovered by the SELENE mission. It has been accepted that the high-speed electrons in the ambient SW determine the lunar night-side environment. Therefore, previous lunar-wake models are based on the electron domination, and no effect of SW proton entry on the near-Moon wake environment has been taken into account so far. Recent SELENE observations revealed that a part of the SW protons are reflected at the lunar dayside surface and picked-up by the SW electric field (Saito et al., GRL, 2008), and some of them access the deepest lunar wake; this process is called type-II entry (Nishino et al., GRL, 2009). Here we show that the type-II entry of SW protons forms proton-governed region (PGR) to drastically change the electromagnetic environment of the lunar wake. Broadband electrostatic noise found in the PGR is manifestation of electron two-stream instability, which is attributed to the counter-streaming electrons absorbed from the ambient SW to maintain the quasi-neutrality. An acceleration of the absorbed electrons up to about 1 keV means a superabundance of positive charges of 10⁻⁴- 10⁻⁷ cm⁻³ in the near-Moon wake, which should be immediately canceled out by the incoming high-speed electrons. This is a general phenomenon in the lunar wake, because PGR does not necessarily require peculiar SW condition for its formation.

Keywords: Lunar wake, Solar wind plasma, Plasma waves, Particle acceleration