Japan Geoscience Union Meeting 2010

(May 23-28 2010 at Makuhari, Chiba, Japan)

¹Kyoto University, ²Tokyo Gas Co.,Ltd.

©2009. Japan Geoscience Union. All Rights Reserved.

MAG021-11 Room: 201A Time: May 26 11:45-12:00

Investigation of the mechanism of dissolution enhancement by using CO2 microbubbles in geological sequestration

Tatsuya Yamada^{1*}, Ziqiu Xue¹, Toshifumi Matsuoka¹, Hiromichi Kameyama², Susumu Nishio²

CO₂microbubble injection is a novel technology for CO₂geological sequestration. Currently most of CO₂geological sequestration projects are focused on large-scale emission sources, while there is a practical need to inject CO₂from small- to middle- scale emission sources. CO₂microbubble injection is suitable for storing CO₂in aquifers with non-anticline (monotonic) structure in a low-cost concept. Inlaboratory experiments, CO₂microbubbles were generated by injecting CO₂through micro porous filtersand the behaviors of CO₂microbubbles were recorded by a high speed video camera system. Our results suggest that more microbubbles generated by filters with smaller pore and CO₂dissolution enhanced byCO₂microbubbles. We are working on quantifying the CO₂ microbubbles size and the volume of dissolved CO₂.

Keywords: CO2 geological sequestration, microbubble, dissolution