Japan Geoscience Union Meeting 2010 (May 23-28 2010 at Makuhari, Chiba, Japan) ©2009. Japan Geoscience Union. All Rights Reserved. MIS010-13 会場: 303 時間: 5月23日 13:45-14:00 ## CO₂-Vの結晶構造:下部マントルでの有力な含炭素相 Crystal structure of solid carbon dioxide CO₂-V : a possible host for subducted carbon in the lower mantle. 瀬戸 雄介1*,浜根 大輔2,永井 隆哉3,藤野 清志4 Yusuke Seto^{1*}, Daisuke Hamane², Takaya Nagai³, Kiyoshi Fujino⁴ '神戸大学理学研究科,'東京大学物性研究所,'北海道大学理学研究院,'愛媛大学地球深部ダイナミクス研究センター ¹Earth & Planet. Sci., Kobe Univ., ²ISSP, Univ. Tokyo., ³Natural History Sci., Hokkaido Univ., ⁴GRC, Ehime Univ. キーワード:ダイアモンドアンビルセル,放射光X線回折,炭酸塩鉱物,マグネサイト,二酸化炭素, クリストバライト Keywords:diamond anvil cell, synchrotron radiation X-ray diffraction, carbonate, magnesite, carbon dioxide, cristobalite The amount of carbonate within marine sediment that is subducted at convergent margins is estimated to be as much as 1.8×10^{12} mol/year; this represents an important problem in the global recycling of carbon in terms of the depth to which the carbonates are transported into the Earth's interior. Although uncertainty remains as to whether carbonatitic melts are produced in basalt + carbonate composition along subduction geotherm in the upper mantle, it is not necessarily the case that all of hosts of subducted carbon are removed from the subducted slabs before reaching the lower mantle. Here, we demonstrate the fate of subducted carbonates under the lower mantle condition High-pressure and high-temperature experiments were performed using laser heating diamond anvil cells involving three systems as follows: (i) calcite + MORB, (ii) magnesite + silicon dioxide, and (iii) carbon dioxide. Run products were characterized by synchrotron radiation X -ray diffraction, transmission electron microscopy, and Raman spectroscopy. In basaltic composition, CaCO₃(calcite and aragonite), the major carbon-bearing phase in marine sediments, is promptly altered into magnesite (MgCO₃) via reactions with Mg-bearing silicates under the upper mantle conditions. After reaching the lower mantle, the magnesite decomposes into an assemblage of CO2+ MgSiO3perovskite in the presence of SiO2, which is a major phase of basaltic composition within the lower mantle. Magnesite is not the only host phase for subducted carbon: solid CO2also carries carbon in the lower mantle. Under the lower mantle conditions, CO₂crystallizes as a non-molecular (or polymeric) phase (CO₂-V): The diffraction pattern of the CO₂-V is consistently interpreted in terms of a tetragonal unit cell (Z = 4, a = 3.584 A, c = 5.908 A at 50GPa). A beta-cristobalite structure (space group I42d) gives a good account of our data qualitatively. Isothermal molar volume (300K) of the CO₂-V in the present study is smaller than that indexed as a tridymite structure proposed by previous studies at any pressures.