Japan Geoscience Union Meeting 2010

(May 23-28 2010 at Makuhari, Chiba, Japan)

©2009. Japan Geoscience Union. All Rights Reserved.

SMP057-04 Room: 301A Time: May 23 14:24-14:37

Kinetic study on dehydration reactions of Ca(OH)₂and Ca(OD)₂by Thermo Gravimetry measurements

Takaya Nagai^{1*}, Kobayashi Sawa², Kuribayashi Takahiro³

¹Faculty of Science, Hokkaido Univ., ²School of Science, Hokkaido Univ., ³Graduate School of Science, Tohoku Univ.

Hydrous minerals are expected to be present in the downgoing slabs and the uppermost earth's mantle. Knowledge of the physical properties of hydrous minerals, especially, mechanism of dehydration process is important to understand the source of water in the mantle. Portlandite, Ca (OH)₂, has a CdI₂type structure (trigonal, space group P-3m1) and one of the most simple hydrous minerals. Ca(OD)₂is often used for neutron scattering experiments instead of Ca(OH)₂because of the incoherent cross section of H. However, it is not so clear whether Ca(OD)₂is good analogous with Ca(OH)₂in terms of some physical properties.

In order to understand kinetics of dehydration reactions of Ca(OH)₂and Ca(OD)₂, we performed Thermo Gravimetry (TG) measurements s at several different rate of elevating temperature (1, 5, 10 and 20 K/min) and determined activation energies of dehydration reactions by the Ozawa method (e.g., Ozawa, 2005). During TG measurements Ar gas was introduced in to the TG furnace to avoid the reaction between the samples and CO₂. We obtained activation energies of 16. 6 and 15.2 kcal/mol for Ca(OH)₂and Ca(OD)₂, respectively. When the activation energy of dehydration reaction reflects the bonding energy of O-H(D), the activation energy for Ca(OD)₂is expected to be significantly larger than that for Ca(OH)₂. Therefore, the activation process during the dehydration reaction should be different from the breaking of O-H(D) bonding. We also measured the FT-IR spectra of Ca(OH)₂and Ca(OD)₂at elevated temperatures. The positions of OH- and OD-stretching bands are shifted to lower wavenumbers with elevating temperature. The temperature coefficients for those bands are -0.28(4) and -0.43(3) cm⁻¹/K, respectively. It is interesting that both of those bands disappear at about 543 K which is more than 100 K below the onset temperature of dehydration.

Keywords: hydrous mineral, dehydration, Thermo Gravimetry, kinetics, Ca(OH)₂, Ca(OD)₂