

SMP057-08

Room: 301A

Time: May 23 15:30-15:43

## Technical development for neutron diffraction at very high pressure

Hiroyuki Kagi<sup>1\*</sup>, Takuo Okuchi<sup>2</sup>, Kazuki Komatsu<sup>1</sup>, Yoshiya Uwatoko<sup>1</sup>, Shigeo Sasaki<sup>3</sup>, Hiroshi Arima<sup>5</sup>, Hisako Hirai<sup>4</sup>, Osamu Yamamuro<sup>1</sup>, Tadashi Kondo<sup>6</sup>, Toyotaka Osakabe<sup>7</sup>

<sup>1</sup>University of Tokyo, <sup>2</sup>Okayama University, <sup>3</sup>Gifu University, <sup>4</sup>Ehime University, <sup>5</sup>J-PARC center, <sup>6</sup>Osaka University, <sup>7</sup>JAERI

We have been developing new experimental techniques for measuring neutron diffraction patterns of hydrogen-bearing materials at ultra high-pressure conditions. In general, large volume is required for measuring neutron diffraction in comparison with X-ray diffraction measurements. Our research project aims to develop new types of high-pressure cells with large sample volume, to develop an elliptical supermirror guide for obtaining high-flux neutron beam, and to investigate pressure-response of hydrogen bonds.

Nano-polycrystalline diamond (NPD) was applied as an anvil material for a new type highpressure cell. A proto-type cell was tested on the engineering materials diffractometer beam line (TAKUMI, BL-19) at the J-PARC neutron facility and neutron diffraction patterns from a sample loaded in the cell were obtained.

A palm cubic anvil cell was developed for neutron diffraction measurements at low temperature and high pressure. Recently, this cell was applied for observing hydrogen-ordered ice phase at high pressure.

The development of a supermirror guide also strongly contributes to the construction of highpressure dedicating beamline, PLANET, BL-11 at J-PARC. We will introduce our recent research activities from our group in the presentation.

Keywords: neutron, high pressure, hydrogen, neutron diffraction