Japan Geoscience Union Meeting 2010

(May 23-28 2010 at Makuhari, Chiba, Japan)

©2009. Japan Geoscience Union. All Rights Reserved.

SSS014-04 会場: 304

時間: 5月27日14:30-14:45

2003年十勝沖地震(M8.0)の余震活動に関連したひずみ事象

A Strain Event Related to Aftershock Activity Following the 2003 Tokachi-oki Earthquake (8.0)

高波 鐵夫 1* , セルウィン サックス 1 , アラン リンデ 1 , ウィ ペング 2 , 北川 源四郎 2

Tetsuo Takanami^{1*}, Selwyn I. Sacks¹, Alan T. Linde¹, Hui Peng², Genshiro Kitagawa²

¹カーネギー研究所, ²統計数理研究所

¹Carnegie Institution of Washington, ²The Institute of Statistical Mathematics

On September 25, 2003 at 19:50 (UTC) a great thrust earthquake occurred off Tokachi (Tokachioki), the junction of the Kuril and the Japan trenches; many aftershocks were recorded. For aftershocks with magnitude >4.0, the dominant active period was from 25th September to 11th October. Almost all the aftershocks are thrust faults on the plate boundary. They did not occur in the large stress-drop zone, but surrounding the main shock (Ito et al., 2004). The pattern suggests that many aftershocks on the plate boundary were triggered by stress increase due to non-uniform rupture process of the main shock (Ito et al., 2004). A Sacks-Evertson borehole strain meter is located 105 km from the epicenter of the main shock at azimuth 300 degrees. The sensor is at a depth of 110m in a borehole at Urakawa Seismological Observatory (KMU) of Hokkaido University in the southern part of the Hidaka Mountains. The strain data showed rapid contraction during the period of high seismic activity with the strain data closely resembling the plot of cumulative number of aftershocks. This contraction was followed by slower expansion over a longer time interval. We examine possible mechanisms for the relation between the aftershock activity and the deformation changes observed during the beginning of the aftershock sequence. Conclusion:

- 1. State-space modeling for decomposition with Non-Gaussian Noise and Jump process is used to isolate tidal signal, pressure and precipitation effect.
- 2. Two slow slip stages calculated using the formulation by Okada (1992) have been identified on the Pacific subduction plate beneath southern Hokkaido. Over long time intervals these patches are aseismic.
- 3. Unusually, there were no co-located small earthquakes during the slow slip events; rather the areas bounding the slow slip regions show enhanced seismic activity during the slip episodes.
- 4. The average slip for each stage was 50cm, which suggested that there must have been considerable long-term strain storage. The average slip on the adjacent main earthquake fault was about 3m, with a 5 m peak.
- 5. The model is based primarily on the strain transient but is in general agreement with the GPS data.

キーワード:2003年十勝沖地震,体積ひずみ記録,スロースリップ断層運動,余震活動, 状態空間モデル,信号分離

Keywords: 2003 Tokachi-oki earthquake, Volume strain record, Slow slip faulting, Aftershocks, State-space model, Signal decomposition