
SSS018-04 Room: IC Time: May 25 11:30-11:45

Accelerating Simulation of Seismic Wave Propagation with Multi-GPU

Taro Okamoto1*, Hiroshi Takenaka2, Takeshi Nakamura3

1Tokyo Institute of Technology, 2Kyushu University, 3JAMSTEC

The GPGPU (General Purpose Graphics Processing Unit), or simply GPU, is a highly parallel
processor that executes the arithmetic instructions on many (more than one hundred) processing
units. With its extremely high computing performance which now reaches to nearly one TFLOPS
(tela flops) in single precision arithmetic, it provides highly cost-effective solutions for scientific
and engineering computing. This paper presents our approach to accelerate the simulation of
seismic wave propagation by adopting the GPU computing.

We use NVIDIA TESLA S1070 equipped in the Global Scientific Information and Computing
Center, Tokyo Institute of Technology. A single TESLA GPU has a peak arithmetic performance
of nearly one TFLOPS. It has 4 GB (gigabyte) of main memory called "global memory". The data
transfer rate of the global memory is relatively low compared to the small (but fast) internal
memory in each processing unit. So we have to use the internal memory as a "software-managed
cache memory" to achieve high computational performance.

We have developed a velocity-stress, staggered grid, three-dimensional finite-difference program
for the GPU (TESLA) by using the CUDA programming tools. We reported a preliminary version
of the program at the last SSJ meeting (2009): the preliminary version was based on a second-
order scheme and periodic boundary condition was applied on all the domain boundaries for
simplicity. We have extended the previous program in this paper: we now adopt the fourth-order
scheme, the absorbing boundary condition (Cerjan et al. 1985) on the side and the bottom
boundaries, and free-surface condition at the top boundary.

The amount of data transfered from the global memory to the internal memory of the processing
unit for the fourth-order scheme is larger than that for the second-order scheme: the former is
about 1.38 times larger than the latter. This is because of the extra ghost points required in
adopting the fourth-order scheme. On the other hand, the amount of arithmetic operations for the
fourth-order scheme is about 1.55 times larger than that of the second-order scheme. Therefore,
by assuming a same data transfer rate for both cases, improvement in the computational
performance is expected for the fourth-order scheme (by about 12 percent). Indeed, the arithmetic
operations per second on a single GPU for the fourth-order scheme is about 47.6 GFLOPS (giga
flops: for a case of 384x384x384 grid points) which is about 10 percent larger than that for the
second-order scheme (43.1 GFLOPS). Note that these performance is much better than that of the
conventional CPU: e.g., the arithmetic operations per second for a second-order finite-difference
program is only about 1.5 GFLOPS on a single core of AMD Opteron (2.4 GHz).

We have also implemented Multi-GPU functionality in our program by using the MPI library. We
apply one dimensional decomposition to the (fourth-order) finite-difference domain. We achieve 11
5 GFLOPS on four GPUs for a grid of 384x384x1536 (the last 1536 grid points are divided into
four domain). But in other cases speedup is marginal probably because of the one-dimensional
decomposition (e.g., 74 GFLOPS for a grid of 768x768x512 on four GPUs with 1D-decomposition



of the last 512 grid points). In the Multi-GPU computations, the data on the ghost-grids have to be
transfered from the global memory of GPU to the host computer and exchanged between the host
computers, and then copied back to the GPU because direct data exchange functionality is not
available currently. Thus it is highly important to optimize the data transfer between the GPUs by
using optimized domain decomposition scheme.

Keywords: GPU, wave propagation, finite-difference method, parallel computing


