Origin of dissolved inorganic carbon of hot spring waters discharged from the non-volcanic region of central Kyusyu

Takuya Sakai1∗, Kazutoshi Oue1, Shinji Ohsawa2, Makoto Yamada2, Taketoshi Mishima2, Shin Yoshikawa3, Tsuneomi Kagiyama3

1Graduate School of Education, Oita Univ, 2Beppu Geothermal Research Lab, Kyoto Univ, 3Aso Volcanological Lab, Kyoto Univ

For elucidation of carbon sources of dissolved inorganic carbon (DIC) in the hot spring waters discharged from the non-volcanic region between Aso and Kirishima volcanoes of Kyusyu District, Japan, and also in order to search a deep-seated aqueous fluid derived from subducting oceanic plate in the region, we analyzed major chemical components, dD and d18O of water and d13C and concentration of DIC, rare gas isotope concentrations of dissolved gases of the hot spring waters. Although water of every hot spring is originated from meteoric water shown by water isotopic data (dD and d18O), relationships between d13C and concentration of DIC suggests that the DIC should be formed by mixing of soil and two kinds of deep-originated CO2.

This idea is supported by isotopic date of rare gases (3He/4He vs. 4He/20Ne) and relation between concentrations of Ca and HCO3 ions, and it is confirmed that the two kinds of deep-originated CO2 are mantle-derived CO2 and CO2 originated from subducted marine carbonate by a calculation of contribution of source carbons of selected hot spring waters. Moreover, we calculated respective contribution ratios of deep-originated CO2 to DIC of all the hot spring waters on the basis of the linear relation observed between contribution ratios of deep-originated CO2 and d13C values of DIC of selected hot spring waters, and expressed hot springs showing high contribution ratios (more than 55%) on a published map showing crustal resistivity structure of this studied area, thereby it appears that hot springs rich in DIC derived from the subducted marine carbonate are roughly concentrated on low electrical resistivity zone extending NE direction from Kirishima volcano. This result seems to suggest the possibility that an associated aqueous fluid of dehydrated fluid from subducting oceanic plate forms the low electrical resistivity zone. On the other hand, distributions of high contributions of mantle-originated CO2 of hot spring waters are concentrated in the Hitoyoshi Basin which is thought to be a tectonic basin formed by fault movement, and this result may suggest that a passageway for rising of mantle-derived CO2 must be formed in the crust under this area.

Keywords: non-volcanic region, dissolved inorganic carbon, mantle, deep-originated CO2, low electrical resistivity zone, dehydrated fluid from subducting plate