Use of compound specific isotope analysis (CSIA) on investigation of soil and groundwater contamination

Makoto Nakashima¹*, Takeshi Saito², Maki Tsujimura², Norio Tase²

¹Kokusai Environmental Solutions Co., Ltd, ²Life and Environ. Sci., Univ. Tsukuba

In order to consider the effectiveness of CSIA on investigation of soil and groundwater contamination, stable carbon isotope ratio (d¹³C) of each CVOC product that becomes potential source contaminant was measured and the effectiveness of CSIA on investigation of soil and groundwater contamination was examined by investigating the d¹³C value distribution about each CVOC on a soil and groundwater contaminated site.

In this analysis, experimental reagents and the industrial reagents of CVOCs produced in Japan about CVOCs products that become potential source contaminants were collected and the d¹³C values of these products were measured using Elemental Analyzer/Isotope Ratio Mass Spectrometer (EA/IRMS).

As the result of measuring the d¹³C values about four tetrachloroethene (PCE) products and four trichloroethene (TCE) product, d¹³C values of PCE were -37.29 to -29.77 permil and that values of TCE were -33.49 to -27.18 permil. The range of the d¹³C values on PCE products was greater than that on TCE products.

The d¹³C values of CVOC increase by the isotopic fractionation according to the degradation process by the microorganism and hardly change in a physical process such as the dilutions and volatilizing. Therefore, there is a possibility to be able to specify the contaminant source based on the result of CSIA of the contaminant.

On the groundwater investigation in a soil and groundwater contaminated site by PCE as a primary source, The d¹³C values of each CVOC in groundwater were measured by CSIA using Gas Chromatograph/Combustion/Isotope Ratio Mass Spectrometer (GC/CRMS), and two dimension distributions of the d¹³C values in aquifer were estimated about each CVOC. It is reported that the uncertainty of the d¹³C value is within the plus or minus 0.5 permil under the ideal condition, though the problem remains in the reliability of low concentration samples. The groundwater investigations were done in August and December, 2007.

In August, the d¹³C values of PCE in the monitoring well of RW-C which installed into the source area was -27.03 permil and the value in the monitoring well of A-3.0 which is located 40.4 m downstream side of RW-C was -23.10 permil.

In December, contamination mechanism which was estimated from the d¹³C values data was same with the one in August. Therefore, it was estimated that the movement mechanism of contaminant is steady.

In December, contamination mechanism which was estimated from the d¹³C values data was same with the one in August. Therefore, it was estimated that the movement mechanism of contaminant is steady.

Keywords: soil and groundwater contamination, stable carbon isotope, compound specific isotope analysis, chlorinated volatile organic compound