Subsurface flow processes of the soil and bedrock in a small headwater catchment

Shimpei Kawaguchi1*, Maki Tsujimura1, Yuichi Onda1, Hiroaki Kato1, Tsutomu Yamanaka2

1Grad. Sch. Life Env. Sci., Univ. Tsukuba, 2TERC, University of Tsukuba

The hydrometric and tracer approaches were applied to investigate subsurface water flow processes of the soil and bedrock in a small headwater catchment underlain by sandstone, Karasawasan University Forest, Tokyo University of Agriculture and Technology, Tochigi prefecture, eastern Japan.

During the observation period (June 19, 2010 - December 29, 2010), 862 mm precipitation were observed and the runoff ratio of the monitored spring discharge was 32\%, that suggesting a large amount of groundwater infiltrate into the bedrock.

Groundwater level changed in the boreholes drilled into the bedrock with a similar trend of hydrograph at spring. The lag time from rainfall peak to the runoff peak shows a good correlation with that of groundwater level. This suggests that the groundwater flow hydraulically connects with the spring discharge.

End-member mixing analysis was applied to evaluate the runoff components using SiO\textsubscript{2} and HCO\textsubscript{3}− concentrations as tracers. Contribution ratio of the bedrock groundwater to the runoff was estimated to be more than 60\% during a secondary runoff peak. The CFCs concentrations show an average residence time of the spring water to be approximately 20 years.

Keywords: headwater catchment, sandstone, rainfall-runoff process, bedrock groundwater, end-member mixing analysis, CFCs