Impact of ice sheet change on the depth of Antarctic continental margin

Jun’ichi Okuno, Hideki Miura, Yoshifumi Nogi
National Institute of Polar Research

The growth and decay history of Antarctic ice sheet affected geographic formation process of Antarctic continent and the margin through the Cenozoic era. Generally the characteristics of geography around Antarctic continent are that the surface topography is rich for the undulations, and the coastal region is what is covered by ice shelf. Moreover, depth of the continental shelf of Antarctica is about 500-900 m, and there is the place that reaches 1,000 m in some places. In particular, ocean floor of the continental shelf of Antarctica is considerably deep in comparison with that of the other sea areas in the world. On the other hand, the conventional geophysical observations suggest that the topography of the long wavelength of the current Antarctic continent is almost isostatic equilibrium. This implication means that the present Antarctic ice sheet as a surface load makes the Earth deform. So the reason why continental shelf of Antarctica is very deep would be that the whole Antarctic continent including the continental shelf subsided by existence of Antarctic ice sheet as a huge load on earth’s surface in comparison with the other continental shelf in the world. However, very few quantitative evaluations have been reported on the relation between the depth of continental margin and Antarctic ice sheet. Various interpretations using the geographical features and geological data in land and the peripheral seabed and the numerical simulation is essential to consider the relations of ice sheet history and geographic evolution of Antarctica. Here, we show the quantitative differences of the continental depth between Antarctica and the other continent, and using the glacial isostatic adjustment (GIA) modelling, we estimate the effects of ice sheet loading on the depth distribution of the continental shelf around Antarctica.

Keywords: Antarctic ice sheet, continental margin, isostasy