Holocene vegetation history and quantitative reconstruction of palaeoclimate using pollen profile from Lake Ogawara

Akihiro Yoshida1*, Hiroko Kimura2, Yoshimune Morita3, Sadako Takeuti3, Yoshitsugu Sinozuka4, Yoshikazu Yamada5, Katsuya Gotanda6, Hitoshi Yonenobu6, Yoshinori Yasuda7

1Botanical Garden, Tohoku University, 2Faculty of Science, Okayama University, 3Yanagimachi Laboratory of Natural Studies, 4Graduate School of Environmental Science, 5College of Education, Naruto University, 6Faculty of Policy Informatics, Chiba University, 7International Research Center for Japanese Studies

High-resolution climate records in terrestrial areas provide important information about the mechanisms of climate teleconnection via atmosphere and ocean circulation. Climate change during the Holocene was characterised by short-lived and small magnitude. Some geological evidence suggests that cooling in the early Holocene triggered by catastrophic release of fresh water stored in glacial Lake. In particular, the 8.2 ka cooling event seems to have had an immediate and large-scale impact throughout the North Atlantic region. However, high-resolution climate data are sparse in the mid-latitude zones of western Pacific, to discuss the picture on the hemispheric scale.

The East Asian monsoon is one of the most important climatic boundaries in understanding the global climate teleconnection. The Pacific side of northeastern Japan, especially, is a suitable location for studying the East Asian monsoon, because this area is strongly influenced by the Siberian, Pacific, and Okhotsk high-pressure systems. Therefore, the palaeoclimate records at this region are expected to detect the strength of winter and summer East Asian monsoon.

As a preliminary report, we present the results of low-resolution pollen profile from a continuous sediment core at Lake Ogawara, northeastern Japan. We discuss vegetation changes and climate during the Holocene using pollen profile, in attempt to better understand past monsoon activity.

Keywords: pollen analysis, vegetation history, pollen-based climate reconstruction, Holocene, Lake Ogawara