

BPT023-04

会場:201B

時間:5月22日11:30-11:45

深海底現場での巣穴型どり:初島沖湧水サイトの例 In situ burrow casting on the deep sea: an example from the Off Hatsushima cold seep site

清家 弘治¹*, ジェンキンズ ロバート², 渡部 裕美³, 野牧 秀隆³, 佐藤 圭² Koji Seike¹*, Robert Jenkins², Hiromi Watanabe³, Hidetaka Nomaki³, Kei Sato²

¹ 港湾空港技術研究所,² 横浜国立大学環境情報学府,³ 海洋研究開発機構 ¹Port and Airport research Institute, ²Yokohama National University, ³JAMSTEC

Burrows produced by marine invertebrate animals are quite important for our understanding of benthic ecology. Burrows also affect significant impact on geochemical properties of the marine sediments where their producers live, because they provide seawater into sediments. However, burrow morphology on the deep sea had been unknown to date, although numerous burrows occur on the seafloor. Here we document an experimental in situ burrow casting on the Off Hatsushima cold seep site (1173 m deep) for the first time. Casts were made with polyester resin using the ROV *Hyperdolphin* and the casting device *Anagattinger*. Anastomosing network of the small burrows and Y-shaped burrow of *Acharax johnsoni* were observed. This result indicates that complex and abundant burrow system occur under the deep seafloor. In addition, the burrows might affect subsurface geochemical properties of the sediments in the seep site. Our technique can contribute to deep sea ecology, microbiology, and geology.