Real time, continuous measurements of CO\textsubscript{2} and H\textsubscript{2}O isotopes in the forest using laser absorption spectrometers

Ryuichi Wada1*, Masahiro Takemura1, Mai Ouchi1, Tomoki Nakayama1, Yutaka Matsumi1, Satoru Takanashi2, Yuichiro Nakai2, Kenzo Kitamura2, Naoyuki Kurita3, Yasushi Fujiyoshi4, Kenichiro Muramoto5, Tetsuya Hiyama6, Gen Inoue6, Naomi Kodama7, Kenzo Kitamura8

1STE laboratory, Nagoya Univ., 2FFPRI, 3JAMSTEC, 4Inst. Low Temp. Sci., Hokkaido Univ., 5College of Sci. and Eng., Kanazawa Univ., 6Research Inst. For Humanity and Nature, 7National Inst. for Agro-Environ. Sci., 8Yamanashi Inst. of Env-iron. Sci.

Measurements of CO\textsubscript{2} and H\textsubscript{2}O isotope compositions are very powerful methods for investigating the carbon and water cycles. We had been deployed in the red-pine forest at the foot of Mt. Fuji for 10 days from the end of July, 2010 and had successfully measured CO\textsubscript{2} and H\textsubscript{2}O isotopologues (16O\textsubscript{12}C\textsubscript{16}O, 16O\textsubscript{13}C\textsubscript{16}O and 18O\textsubscript{12}C\textsubscript{16}O for CO\textsubscript{2}, D\textsubscript{2}O and H\textsubscript{2}18O for H\textsubscript{2}O) using infrared absorption laser spectrometers (Aerodyne Inc. for CO\textsubscript{2} and Los Gatos Research Inc. for H\textsubscript{2}O). The CO\textsubscript{2} isotope laser spectrometer can measure the isotope ratios (delta13C, delta18O) of ambient air CO\textsubscript{2} in 10-second integration time with a precision of 0.1 permil in real-time. The height of the observation tower is 30 m. Air was sampled every 260 seconds from six vertical height locations from above the forest canopy to 2 m above the ground. The total interval time was 30 minutes including measurements of standard gases for the calibration. The 30-minutes interval measurements of the CO\textsubscript{2} and H\textsubscript{2}O isotope ratios were repeated continuously during the 10 days. The figure shows observed data for carbon isotopic composition of CO\textsubscript{2}, delta13C, determined by the laser absorption spectrometer in one cycle (30 minutes) from 00:00 August 4, 2010. We will discuss the details of the observation result at the meeting.

Keywords: CO\textsubscript{2} isotopes, H\textsubscript{2}O isotopes, forest, laser spectroscopy, ecosystem, atmospheric CO\textsubscript{2}