

MIS027-P10

Room:Convention Hall

Time:May 22 10:30-13:00

Study of Phase Boundary Change with Cage Occupancy by Molecular Dynamics Simulations

Yohei Mikami^{1*}, Toshifumi Matsuoka¹, Yunfeng Liang¹

¹Kyoto University, Faculty of Engeneering

It has been suggested that carbon dioxide (CO₂) has the potential to replace methane (CH₄) from natural gas hydrates, which is one of the promising methods to recover CH₄ from hydrates and in the meanwhile sequester CO₂ underground. It is important for this method to get the three-phase coexistence lines (solid hydrate, liquid water, and liquid or vapor CH₄/CO₂) of CH₄/CO₂hydrates. In this work, we estimated the phase boundaries of CH₄ hydrate and CO₂ hydrate by molecular dynamics simulations, and discussed the phase behavior of gas hydrates.

In CH_4 -hydrate case, the estimated phase boundary is in very good agreement with the experimental data. In CO_2 -hydrate case, the experimental data are between the estimated phase boundaries using the full occupancy CO_2 -hydrate and the partial occupancy CO_2 -hydrate. The estimated melting temperature of the full occupancy hydrates is higher than that of the partial occupancy hydrates in both CH_4 -hydrate and CO_2 hydrate cases, and the gas hydrate stability zone expands. This result implies that the cage occupancy of gas hydrates influences the stability of gas hydrates.

Keywords: methane hydrate, CO₂ hydrate, molecular dynamics, phase boundary, cage occupancy, gas hydrate