

MIS029-02

Room:203

Time:May 23 16:45-17:00

High levels of gaseous elemental mercury and particulate mercury observed at the summit of Mt. Fuji during summer observ

Osamu Nagafuchi^{1*}, Kuriko YOKOTA², Mayumi JIGE³, Tomonori KAWAKAMI⁴, Shigehiro KAGAYA⁵, Yasuhito IGARASHI⁵, Shinichi FUJITA⁷

¹The universitu of Shiga Prefecture, ²Toyohashi University of Technology, ³Chiba Institute of Science, ⁴Toyama Prefectural University, ⁵University of Toyama, ⁶Meteorological Research Institute, ⁷CRIEPI

The chemical cycling and spatiotemporal distribution of mercury in the troposphere is poorly understood. We measured gaseous elemental mercury (GEM) and particulate mercury(p-Hg) along with SO2, ozone, aerosols and meteorological variables at the summit of Mt. Fuji (3776m a.s.l.) from 23 August to 30 August. The mean mercury concentrations were 23ng/m3 (GEM) and 4.7ng/m3 (p-Hg). We observed this event of strongly enhanced atmospheric GEM levels with maximum concentration up to 25 ng/m3. High GEM and p-Hg levels were related to pollution events, particularly SO2 transported from Asian Continent. As result of back trajectory analysis will show this phenomena