

MIS036-P89

Room:Convention Hall

Time:May 27 14:15-16:15

Urgent aftershock observation of the 2011 Tohoku earthquake using ocean bottom seismometer network

Masanao Shinohara^{1*}, Tomoaki Yamada¹, Kazuo Nakahigashi¹, Shin'ichi Sakai¹, Kimihiro Mochizuki¹, Kenji Uehira², Yoshihiro Ito³, Ryosuke Azuma⁴, Yuka Kaiho⁵, Tetsuo No⁵, Hajime Shiobara¹, Ryota Hino³, Yoshio Murai⁴, Hiroshi Yakiwara⁶, Toshinori Sato⁷, Yuya Machida¹, Takashi Shinbo¹, Takehi Isse¹, Hiroki Miyamachi⁶, Koichiro Obana⁵, Narumi Takahashi⁵, Shuichi Kodaira⁵, Yoshiyuki Kaneda⁵, Kenji Hirata⁸, Sumio Yoshikawa⁸, Kazushige Obara¹, Takaya Iwasaki¹, Naoshi Hirata¹

¹ERI., Univ. Tokyo, ²ISV, Kyushu Univ., ³Sci., Tohoku Univ., ⁴ISV, Hokkaido Univ., ⁵JAMSTEC, ⁶Sci., Kagoshima Univ., ⁷Sci., Chiba Univ., ⁸MRI, JMA

The 2011 off the Pacific coast of Tohoku earthquake occurred offshore of northeast Japan region on March 11, 2011. Knowledge of precise aftershock distribution is inevitably important to understand the generation mechanism of this large earthquake. In addition, this kind of information provides useful constraints for studies of rupture in such wide source region. In order to study the aftershock activity of this event, we started deployment of seventy-three ocean bottom seismometers (OBSs) four days after the mainshock. Consequently, we observed the aftershocks at 121 sites including the pre-installed OBS sites in total. Deployed OBSs after the mainshock are being recovered after one-month observation. The observation area is 500 km x 200 km and has a high aftershock activity, which is estimated from the land seismic network. The spatial interval of OBS is approximately 25 km to cover the whole source region. We use various types of the digital recording OBS system. Most of OBSs have both vertical and horizontal velocity sensitive electro-magnetic geophones with a natural frequency of 4.5 Hz. This 4.5Hz OBS are equipped with a glass sphere pressure vessel with the recording period of 1-3 months. Some OBSs use three-component velocity sensitive electro-magnetic geophones with a natural frequency of 1 Hz. The 1Hz OBS uses glass sphere or titanium sphere as a pressure vessel. The others use broadband seismic sensor or accelerometer as a seismic sensor. The OBS with titanium sphere pressure vessel has the longest recording period of 1 year. The resolution of the A/D conversion is 16 bits or 24 bits. Accurate timing is provided by a precise crystal oscillator. All the OBSs are of a pop-up type with an acoustic release system. The recovered OBS position at the sea floor was estimated by using acoustic ranging and ship GPS positions.

In south of the source region, thirty-four long-term OBSs (LT-OBSs) had been deployed before the occurrence of the mainshock, and we recovered three LT-OBSs to clarify the depth distribution of aftershocks. Using the data of OBSs, 99 aftershocks were located. Most of the aftershocks were located in a depth range of 5 - 30 km and concentrate in the plate boundary region. In addition, aftershocks occurred within the subducting oceanic crust and the 6.2-km/s layer of the landward plate. No aftershocks were found in the mantle of the subducting plate. From the results of previous seismic survey using OBSs and controlled sources, the subducting Philippine sea plate is estimated to be contact with the subducting Pacific plate. The southern end of the seismic activity region of the aftershocks corresponds to the region of two subducting plate contact. We infer that the propagation of the rupture during the mainshock sequence was terminated at the contact point with two subducting oceanic plate.

Keywords: The 2011 Tohoku earthquake, aftershock, subduction, ocean bottom seismometer