

PEM005-13

会場:303

時間:5月26日17:50-18:05

GEMSIS-RC モデルに基づいた太陽風動圧変動に対する内部磁気圏応答の研究 Study of the inner magnetospheric response to pressure pulses in the solar wind based on the GEMSIS-RC model

関 華奈子^{1*}, 天野 孝伸², 三好 由純¹, 松本 洋介¹, 梅田 隆行¹, 齊藤 慎司¹, 宮下 幸長¹, 海老原 祐輔³ Kanako Seki^{1*}, Takanobu Amano², Yoshizumi Miyoshi¹, Yosuke Matsumoto¹, Takayuki Umeda¹, Shinji Saito¹, Yukinaga Miyashita¹, Yusuke Ebihara³

¹名古屋大学太陽地球環境研究所,²名古屋大学理学系研究科,³京都大学生存圈研究所 ¹STEL Narrow University ²Conducts School of Science Narrow University ³BUSU Knots University

¹STEL, Nagoya University, ²Graduate School of Science, Nagoya Univ., ³RISH, Kyoto University

Geospace storms are the largest electromagnetic disturbance in near-Earth space and facilitate extensive particle acceleration in the inner magnetosphere, which causes development of the ring current and a drastic increase of relativistic electrons in the radiation belt. GEMSIS (Geospace Environment Modeling System for Integrated Studies) of STEL, Nagoya University, is the observation-based modeling project for understanding energy and mass transportation from the Sun to the Earth in the geospace environment. Aiming at understanding the dynamics of the inner magnetosphere during the geospace storms, the GEMSIS-Magnetosphere working team has addressed the development of new physics-based models for the global dynamics of the ring current (GEMSIS-RC model) and radiation belt (GEMSIS-RB model).

The GEMSIS-RC model is a self-consistent and kinetic numerical simulation code solving the five-dimensional collisionless drift-kinetic equation for the ring-current ions in the inner-magnetosphere coupled with Maxwell equations. It is demonstrated that the propagation of magnetohydrodynamic waves can successfully be described by the present model. It is also found that the self-consistent coupling could affect the transport of energetic particles especially at low energies as well as the intensity and spatial distribution of field-aligned currents. Our approach is unique in the sense that it includes MHD wave modes as well as deformation of magnetic field configuration due to the ring current self-consistently. In order to investigate responses of the inner magnetosphere to pressure pulses in the solar wind, time variation of magnetic and electric fields as well as the ring current ion distributions is simulated based on the GEMSIS-RC model with simple boundary conditions to mimic an abrupt compression of the inner magnetosphere. The effects of the pressure pulses on excitation of ULF waves, generation of FAC, and change in the pitch angle distribution of ring current ions will be discussed for several cases.

キーワード:内部磁気圏, ULF 波動, リングカレント, 放射線帯, SC, 太陽風動圧

Keywords: inner magnetosphere, ULF waves, ring current, radiation belt, SC, solar wind dynamic pressure