

PEM005-32

Room:303

Time:May 27 15:05-15:20

Substorm ignition in the M-I coupling region

Akira Morioka^{1*}, Yoshizumi Miyoshi², Yukinaga Miyashita², Yasumasa Kasaba³, Hiroaki Misawa¹, Fuminori Tsuchiya¹, Ryuho Kataoka⁴, Akira Kadokura⁵, Kiyohumi Yumoto⁶, Toshifumi Mukai⁷

¹PPARC, Tohoku IUniversity, ²STEL, Nagoya University, ³Graduate School of Science, Tohoku Univ., ⁴IRC, Tokyo Insitute of Technology, ⁵National Institute of Polar Research, ⁶SERC, Kyushu University, ⁷JAXA

The sudden formation of parallel electric fields in the magnetosphere-ionosphere (M-I) coupling system is essential to complete substorm onset. From this standpoint, we focus substorm ignition on field-aligned acceleration, by studying the dynamical behavior of auroral kilometric radiation (AKR). Field-aligned auroral acceleration shows distinct two-step evolution at substorm onset: the activation of low-altitude acceleration (h[~]4000-5000 km) which corresponds to auroral initial brightening, and subsequent abrupt breakout of high-altitude acceleration (h[~]6000-12000 km) which corresponds to auroral breakup. Cases when only low-altitude acceleration (first step evolution) is activated are pseudo-substorms. This indicates that the second evolution of field-aligned acceleration divides full-substorm from pseudo-substorm. The statistical relationship between the plasma-flow burst in the plasma sheet and its response to the M-I coupling region shows that about 65 % of flow bursts cause pseudobreakup/initial-brightening and one third of them develops into full-substorm, while the magnitude of flow velocity does not necessarily determine the substorm intensity. This suggests that some plasma flow bursts originate field-aligned current (FAC) which first enhance low-altitude acceleration, and the increasing field-aligned current induces second acceleration above the preexisting low-altitude acceleration as a consequence of current/current-driven instabilities. In this sense, substorm is finally ignited in the auroral M-I coupling region.

Keywords: substorm, aorural acceleration, M-I coupling region