The geophysical intra-segmentation variation at the ultra-slow spreading Southwest Indian ridge 35-40E

Taichi Sato1*, Kyoko Okino1, Nobukazu Seama4, Hiroshi Sato2, Kentaro Nakamura3, Ryoko Senda1, Shiki Machida2

1 東京大学大気海洋研究所, 2 専修大学経営学科, 3 海洋研究開発機構, 4 神戸大学内海域環境教育研究センター, 5 早稲田大学
1 Atmosphere and Ocean Research Institute, 2 Senshu University, 3 JAMSTEC, 4 Kobe University, 5 Waseda University

It has been widely accepted for many years that the gross morphology of the mid-ocean ridge spreading centers varies with the spreading rate. Over the last decade, several exceptions to the spreading rate dependency have been reported. Recently, the ridge morphology is thought to be governed by the balance of the melt supply and the spreading rate. In this time, we attempt to understand how the variation of melt supply affects ridge architecture using geophysical observations (bathymetry, geomagnetism and gravimetric).

The Southwest Indian Ridge (SWIR) is an ultraslow spreading system, where the spreading rate is almost constant over the whole system, 14-16 mm/yr. The ridge shows a wide variability of seafloor structure, indicating that the spatial and temporal variation of melt supply may play a critical role in the structural process of mid-ocean ridge. The survey area is between Prince Edward fracture zone and Eric Simpson fracture zone (35-40E), which is one of the first order segments of the SWIR and the variation of melt supply may play a critical role in the structural process of mid-ocean ridge. The survey area is between Prince Edward fracture zone and Eric Simpson fracture zone (35-40E), which is one of the first order segments of the SWIR and the Marion Island, the nearest the Edward fracture zone and Eric Simpson fracture zone (35-40E), which is one of the first order segments of the SWIR and the

1) The continuity of seafloor morphology and magnetic isochrones adjacent orthogonal (35 30E to 36 20E) and oblique spreading subsegment (36 20E to 37 10E) at the western half of the survey area suggest that oblique spreading geometry is not a stable structure at least in the survey area. The current oblique subsegment could be orthogonal spreading segment around 3-4 Ma. Major element variation of the obtained MORBs suggest that the primary melt condition (P, T and major composition) is same at orthogonal and oblique subsegment (Sato et al., 2011). On the other hand, trace elements of the MORBs are slightly higher than the typical MORB (Sato et al., 2011). These results suggest that the slightly difference of the source mantle and the degree of melting may result in the forming of the orthogonal and oblique subsegment.

2) Some volcanic structures and moderate present normal magnetization are observed within the axial valley of the oblique subsegment. These may imply that the oblique spreading segment is not amagmatic segment and the melt supplied to the oblique subsegment is more divided into small scale, resulting in the formation of the third-order segment (Mizuno et al., 2010) through the melt focus process.

3) The asymmetric seafloor morphology and crustal thickness at oblique subsegment may be caused the same process at the inside and outside corner of the ridge-transform intersection. The recovery of mantle peridotites at the northern off-ridge part of the oblique spreading segment can support this idea.

Assuming that the on-axis geochemical variation can extend to that of the off-axis, the 3 Myr temporal crustal thickness variation calculated using shipborne gravity (Sato et al., 2010) may be closely related to the difference of the source mantle. However, it should be remembered that the ridge obliquity may encourage the along axis melt migration from oblique subsegment to the adjacent orthogonal subsegment, resulting in the melt focusing.

キーワード: 中央海嶺、海底地形、地磁気異常、重力異常
Keywords: mid-ocean ridge, seafloor morphology, magnetic anomaly, gravity anomaly