High-pressure neutron diffraction experiments of ice at TAKUMI in J-PARC using Palm cubic anvil apparatus

Masashi Arakawa1*, Hiroshi Fukazawa2, Hiroyuki Kagi1, Kazuki Komatsu1, Riko Iizuka1, Jun Abe2, Hiroshi Arima2, Takanori Hattori2, Asami Sano2, Wataru Utsumi2, Takuo Okuchi3, Yoshiki Ohno4, Shigeo Sasaki4

1The University of Tokyo, 2Japan Atomic Energy Agency, 3Okayama University, 4Gifu University

In-situ neutron diffraction measurements of hydrogen-ordered phase of ice VI were performed at J-PARC using a clamp-type high-pressure devise, palm cubic anvil apparatus. The results indicate that the hydrogen-ordered phase of ice VI would be ferroelectric. This might be a new phase of ice. Not only in icy grains and icy bodies’ surface, but also in icy bodies’ interior, ferroelectric ice, which posses the ability to carry a charge, might exist.

Keywords: ice, high pressure, hydrogen ordering, neutron diffraction