A Basic for Gravity Measurement Performance of Simple Gravimeter Using a Force-Balanced-Type Accelerometer on a Carrier

Hiroko Matsuo1, Satoshi Tokue1, Hitoshi Morikawa1*, Shigeo Matsuda2

1Tokyo Institute of Technology, 2Clover tech. Inc.

The gravity survey is applied often to model a ground structure. For this purpose, a spring-type relative gravimeter is usually used. Though this type of gravimeter can provide very accurate data, it is very expensive and difficult to handle. In the engineering field, especially for the estimation of earthquake ground motion, a model of ground structure is needed for large area. This means that a simple and inexpensive sensor to measure the gravity is required. For this, we began to develop a new gravimeter using a force-balanced-type accelerometer. In this study, we examine basic performance of same sensors. Firstly, we develop a preliminary system and calibrate it. Then, a simple measurements was carried out using a Ferris wheel, and some other carriers.

Keywords: gravity survey, force-balanced-type accelerometer, mobile carrier, Independent Component Analysis