Japan Geoscience Union Meeting 2011

(May 22-27 2011 at Makuhari, Chiba, Japan)

©2011. Japan Geoscience Union. All Rights Reserved.

U005-08 会場:国際会議室 時間:5 月 26 日 10:45-11:05

Preliminary examination of Hayabusa asteroidal samples: Noble gases Preliminary examination of Hayabusa asteroidal samples: Noble gases

長尾 敬介 1* , 岡崎 隆司 2 , 中村 智樹 3 , 三浦 弥生 1 , 大澤 崇人 4 , 馬上 謙一 1 , 松田 伸太郎 1 , 海老原 充 5 , T.R. Ireland 6 , 北島 富美雄 2 , 奈良岡 浩 2 , 野口 高明 7 , 土山 明 8 , 上椙 真之 8 , 认本 尚義 9 , M. Zolensky 10 , 白井 慶 11 , 安部 正真 11 , 矢田 達 11 , 石橋 之宏 11 , 藤村 彰夫 11 , 向井 利典 11 , 上野 宗孝 11 , 岡田 達明 11 , 吉川 真 11 , 川口 淳一郎 11

Keisuke Nagao^{1*}, Ryuji Okazaki², Tomoki Nakamura³, Yayoi N. Miura¹, Takahito Osawa⁴, Ken-ichi Bajo¹, Shintaro Matsuda¹, Mitsuru Ebihara⁵, T.R. Ireland⁶, Fumio Kitajima², Hiroshi Naraoka², Takaaki Noguchi⁷, Akira Tsuchiyama⁸, Masayuki Uesugi⁸, Hisayoshi Yurimoto⁹, M. Zolensky¹⁰, Kei Shirai¹¹, Masanao Abe¹¹, Toru Yada¹¹, Yukihiro Ishibashi¹¹, Akio Fujimura¹¹, Toshifumi Mukai¹¹, Munetaka Ueno¹¹, Tatsuaki Okada¹¹, Makoto Yoshikawa¹¹, Junichiro Kawaguchi¹¹

¹University of Tokyo, ²Kyushu University, ³Tohoku University, ⁴Japan Atomic Energy Agency, ⁵Tokyo Metropolitan University, ⁶The Australian National University, ⁷Ibaraki University, ⁸Osaka University, ⁹Hokkaido University, ¹⁰NASA Johnson Space Center, ¹¹JAXA-ISAS

¹University of Tokyo, ²Kyushu University, ³Tohoku University, ⁴Japan Atomic Energy Agency, ⁵Tokyo Metropolitan University, ⁶The Australian National University, ⁷Ibaraki University, ⁸Osaka University, ⁹Hokkaido University, ¹⁰NASA Johnson Space Center, ¹¹JAXA-ISAS

Samples of the asteroid 25143 Itokawa were successfully recovered by the Hayabusa spacecraft. Near-infrared spectroscopic observation by the Hayabusa indicated that the surface materials of the asteroid are similar to the LL5-6 chondrites [1]. Because this is the first chance to measure samples from a known asteroid, we have improved analytical techniques and mass spectrometry system available to noble gas analysis of small grains. Because the returned materials were free from terrestrial noble gas contamination, which is essentially different from meteorites and cosmic dust particles collected on the Earth, the Itokawa samples were treated under condition of nitrogen gas with low concentration of noble gases in the curation facility [2]. Accordingly, we can expect low contamination of terrestrial noble gases for the samples.

Surface materials of asteroids are exposed to solar gases, and the gases are implanted into surface layer of the materials. The asteroidal surface materials are also bombarded by galactic cosmic-rays, producing cosmogenic noble gases with characteristic isotopic compositions through nuclear reactions. Therefore, noble gases of the Itokawa samples would be a mixture of several different origins, e.g., trapped, radiogenic, cosmogenic, and solar gases. The cosmogenic and solar noble gases will provide us with information about the cosmic-ray irradiation, surface gardening, and surface erosion histories of small asteroids.

Detection limits for ³He and ¹³²Xe with our mass spectrometers are ca. $1x10^{-15}$ and $1x10^{-16}$ cm³STP, respectively, which correspond to the number of atoms in the order of 10^4 and 10^3 . Noble gas extraction system using a Nd-YAG laser performs extremely low blank levels (in cm³STP), e.g., $7x10^{-12}$ (⁴He), $1x10^{-13}$ (²⁰Ne), $5x10^{-12}$ (⁴⁰Ar), $2x10^{-16}$ (⁸⁴Kr), and $<1x10^{-16}$ (¹³²Xe). The analytical techniques have been applied to a large number of micrometeorites from Antarctica to measure all noble gases (He, Ne, Ar, Kr, and Xe) extracted from single grains weighing ca. 1 micro-g or less each [3-8]. Measured amounts of noble gases extracted from single grains with carbonaceous chondritic character were (10-10000)x10⁻¹² cm³STP for ⁴He and (1-10)x10⁻¹⁵ cm³STP for ¹³²Xe. The results showed high concentrations of solar noble gases implanted in most micrometeorites, suggesting an importance of solar gas implantation for small grains in space. Histories of crystallization, accumulation of radiogenic noble gases, cosmic-ray irradiation, and solar gas implantation are expected to be variable among the grains as indicated by the single grain analysis of micrometeorites [3-7].

The Hayabusa samples have been analyzed for noble gases as a member of the university consortium team. We used our laser extraction system to extract noble gases from single grains, and measured noble gases on the modified-VG5400 (MS-III) at the Geochemical Research Center, University of Tokyo. The samples were heated stepwisely, two steps at low temperatures and at high temperature to melt. Results will be presented at the meeting.

References: [1] Abe et al. (2006) Science, 312, 1334-1338. [2] Okazaki et al. (2011) LPSC. [3] Osawa T. et al. (2000) Antarctic Meteorite Research 13, 322-341. [4] Osawa T. and Nagao K. (2002) Antarctic Meteorite Research 15, 165-177. [5] Osawa T. and Nagao K. (2002) Meteoritics & Planetary Science 37, 911-936. [6] Osawa T. et al. (2003) Antarctic Meteorite Research 16, 196-219. [7] Osawa T. et al. (2003) Meteoritics & Planetary Science 38, 1627-1640. [8] Bajo K. et al. (2010) Earth, Planets and Space (submitted).

 \pm – \neg – \vdash : noble gases, Hayabusa, preliminary examination, sample return Keywords: noble gases, Hayabusa, preliminary examination, sample return