Preliminary examination of Hayabusa asteroidal samples: Micro-spectroscopic analyses of carbonaceous matter

Introduction The main target of the carbonaceous matter sub-team is the insoluble organic matter (IOM) in the returned sample by the HAYABUSA mission. We are planning to analyze the matter by micro-spectroscopic techniques, such as Raman, fluorescence, infrared (IR) spectroscopy. And in addition to these techniques, we are also planning to use photoemission electron microscopy (PEEM).

IOM is the major fraction of the chondritic carbonaceous matter, and generally assumed to be completely indigenous due to their high molecular weight and immobility. It is characterized by condensed aromatic moieties cross-linked by aliphatic and ether linkages, with various functionality external to the aromatic structure [1]. It converts gradually to graphitic matter during thermal metamorphism, and suggests to what extent thermal metamorphism has proceeded [2]. Raman spectroscopy is a useful tool to evaluate the structural ordering of the matter and the degree of thermal metamorphism [3, 4, 5]. Carbon X-ray Absorption Near Edge Structure (C-XANES) spectra [6] and infrared spectral band of aliphatic C-H stretching [7] are alternative methods to evaluate thermal process of IOM.

The asteroid Itokawa belongs to S-type and its surface is similar to that of LL5 or LL6 chondrite. However, it is a rubble-pile formation history.

Methods We hope to analyze the samples as intact as possible by non-destructive method without using organic resin or adhesives. This sample holder can be put directly on the sample stages of micro-Raman or micro-IR spectrometers, and we can obtain the spectra without taking out the sample grains from the holder. And, because recovered samples by HAYABUSA mission are considered to be small grains, we designed a sample holder to carry it without using organic adhesives. This sample holder can be put directly on the sample stages of micro-Raman or micro-IR spectrometers, and we can obtain the spectra without taking out the sample grains from the holder.

Discussion The first question is whether some particles recovered by the HAYABUSA mission contain extraterrestrial carbonaceous matter. If such carbon-containing particle is found, characterization of IOM will be performed. Micro-Raman spectroscopy is sensitive to skeletal aromatic network and it gives maturity level of IOM. The G-band position of the chondritic carbonaceous matter shifts up with increasing metamorphic grade, and the FWHM-G (Full width at half maximum of G-band) decreases [3, 4, 5]. Fluorescent background reflects overall compositional differences of IOM [4]. External functional groups will be determined by IR spectroscopy, and element-selective analysis of functional groups can be performed by PEEM. These different analytical spectroscopic features also indicate the record of thermal evolution of IOM in individual grains. Such approach can be a clue to an asteroid formation history.
Keywords: Hayabusa, Carbonaceous matter, Micro-spectroscopic analyses