はやぶさ回収試料の初期分析：有機化合物分析
Preliminary examination of Hayabusa asteroidal samples: Organic compound analyses

奈良岡 広1*, 三田 擁2, 滨瀬 健司3, 三田 真史4, 萩村 ひかる5, 斎藤 香織6, 福島 和彦6, 北島 義美1, Scott A. Sandford7, 中村 智樹8, 亀野 高明9, 岡崎 隆司1, 長尾 敬介10, 海老原 豊1, 柊本 尚義12, 士山 明13, 安部 正真13, 矢田 達13, 石橋 之宏13, 口井 慶13, 上野 宗孝13, 岡田 亜明13, 藤村 彰夫13, 向井 利典13, 吉川 真13, 川口 淳一郎1,3

Hirosi Naraoka1*, Hajime Mita2, Kenji Hamase3, Masashi Mita4, Hikaru Yabuta5, Kaori Saito6, Kazuhiko Fukushima6, Fumio Kitajima1, Scott A. Sandford7, Tomoki Nakamura8, Takaaki Noguchi9, Ryuji Okazaki4, Keisuke Nangao10, Mitsuru Ebihara11, Hisayoshi Yurimoto12, Akira Tsuchiyama5, Masanao Abe13, Toru Yada13, Yukihiro Ishibashi13, Kei Shirai13, Munetaka Ueno13, Tatsuki Okada13, Akio Fujimura13, Toshifumi Mukai13, Makoto Yoshikawa13, Junichiro Kawaguchi13

1 九州大学大学院理学研究院, 2 福岡工業大学工学部, 3 九州大学大学院薬学研究院, 4 (株) 資生堂フロンティアサイエンス事業部, 5 大阪大学大学院理学研究科, 6 名古屋大学大学院生命農学研究科, 7 NASA-Ames Research Center, 8 東北大学大学院理学研究科, 9 茨城大学理学部, 10 東京大学大学院理学研究科, 11 首都大学東京理工学研究科, 12 北海道大学大学院理学研究院, 13 宇宙航空研究開発機構 宇宙科学研究所


Many organic molecules have been observed in the interstellar medium as well as extraterrestrial materials. In particular, various organic compounds including amino acids are reported from carbonaceous chondrites, which may have connections to emergence of life on the primitive Earth. By the Hayabusa mission, the existence of organic matter at the surface of Asteroid 25143 Itokawa can be examined without terrestrial contaminants. Ordinary chondrites, which seem to have an origin of S-type asteroid including Itokawa [1] [2], are generally depleted in not only volatile organic compounds but also carbonaceous materials due to their relatively high formation temperature. However, the existence of organic compounds is possible at the surface of Itokawa, because indigenous amino acids are found in lunar soils by Harada et al. [3] and Brinton and Bada [4] and interplanetary dust particles (IDPs) by Brinton et al. [5]. In addition, polycyclic aromatic hydrocarbons (PAHs) are reported in a Martian igneous meteorite [6] and IDPs [7]. In this study, we will perform a preliminary organic compound analysis on particles from asteroid Itokawa returned by the Hayabusa mission.

The particles are rinsed with small amount of methanol/dichloromethane on the plate. The extract is hydrolyzed with HCl followed by separation into amino acid and other organic compound fractions. Amino acid analysis with enantiomeric separation is carried out using two-dimensional high-performance liquid chromatography with highly sensitive fluorescence detectors (2D-HPLC/FD) [8]. The other organic fraction including PAHs is subjected to time of flight-secondary ion mass spectrometry (ToF-SIMS) analysis. The ToF-SIMS analysis is also applied directly to the carbonaceous materials in the particles.

Detection of amino acids and PAHs is highly dependent on the concentrations of these compounds in particles as well as the sample amount available for the analyses. If the particles yield glycine, one of the abundant amino acids in extraterrestrial materials, as much as the concentration in carbonaceous chondrites (10-500 fmol/micro gram) [9] [10], the 2D-HPLC/FD can reveal the amino acid distribution. If the particle contains glycine as the similar amount as lunar soils (~0.1 fmol/micro gram) [3] [4], the quantification competes against the detection limit. The ToF-SIMS analysis can identify various organic compounds including PAHs in a ppm level [12]. The compound distributions may clarify origins of organic compounds at the surface of Itokawa. If glycine is the most abundant as observed in lunar soils [3] [4] and cometary dusts [11], hydrogen cyanide (HCN) may contribute to the amino acid precursors. In the case of anhydrous minerals, the HCN may be implanted by solar wind. If alpha-aminoisobutyric acid (AIB) is abundant as observed in some CM chondrites, meteoritic source derived from aqueous altered parent body is considered after a Sterecker-type reaction with ketones. In such a case, the organic compounds survived upon impact. The particle amount available for the preliminary organic analysis is very limited. Further investigations are necessary on the second stage of analysis with much sample by direct extraction with hot water.


Keywords: Hayabusa, Itokawa, Organic compounds