Correction of Radar Reflectivity and Differential Reflectivity for Rain Attenuation at X-band

Dong-Soon Kim¹⁺, Masayuki Maki¹, Dong-In Lee², Shingo Shimizu¹, Maesaka Takeshi¹, Koyuru Iwanami¹
Dong-Soon Kim¹⁺, Masayuki Maki¹, Dong-In Lee², Shingo Shimizu¹, Maesaka Takeshi¹, Koyuru Iwanami¹

¹NIED, Japan, ²PKNU, Korea
¹NIED, Japan, ²PKNU, Korea

Rain attenuation correction is very important to obtain accurate radar reflectivity $Z_H$ and differential reflectivity $Z_{DR}$, particularly with the X-band wavelength radar. In the case of a dual-polarized radar, $Z_H$ and $Z_{DR}$ can easily be corrected by differential propagation phase measurement ($K_{DP}$ or $PHI_{DP}$), because phase measurements are not affected by attenuation or calibration errors. In the self-consistent method with constraints proposed by Bringi et al. (2001), an optimal value (alpha) for the specific coefficient between $K_{DP}$ and specific attenuation at h-polarization $A_H$ ($A_H = alpha \times K_{DP}$) is determined by employing a minimization process for each beam of the radar. However, the specific coefficient alpha can vary widely, mainly as a result of natural variations in DSD, temperature, and drop shape in a precipitation system.

The shifted self-consistent (SSC) algorithm based on the self-consistent method for rain-attenuation correction of reflectivity $Z_H$ and differential reflectivity $Z_{DR}$ are presented for X-band polarimetric radar. This SSC algorithm calculates the optimum coefficients for the relation $A_H-K_{DP}$, every 1 km along a slant range. The advantage of this method is that the natural distribution of DSD along the range of radar can be represented by the optimum alpha distribution. The attenuation-corrected $Z_{DR}$ is calculated from reflectivity at horizontal polarization and from reflectivity at vertical polarization after attenuation correction. The SSC algorithm is applied to RHI (range-height indicator) scans as well as PPI (plan position indicator) volume scan data observed by X-band wavelength (MP-X) radar, as operated by the National Research Institute for Earth Science and Disaster Prevention (NIED) in Japan. The corrected $Z_H$ and $Z_{DR}$ values are in good agreement with those calculated from the drop size distribution (DSD) measured by disdrometers. The developed attenuation correction algorithm can be applied to various situations observed by the NIED MP-X radar.

キーワード: Rain attenuation correction, X-band Polarimetric radar, Reflectivity, Differential reflectivity, Specific attenuation, Differential propagation phase
Keywords: Rain attenuation correction, X-band Polarimetric radar, Reflectivity, Differential reflectivity, Specific attenuation, Differential propagation phase