(May 22-27 2011 at Makuhari, Chiba, Japan)

©2011. Japan Geoscience Union. All Rights Reserved.

SSS027-01 会場:105

時間:5月22日10:45-11:00

海洋波の相関解析による長波津波グリーン関数の抽出:1次のボルン近似に基づく 理論的導出

Retrieval of tsunami Green's function from the cross-correlation of continuous ocean waves

齊藤 竜彦 ^{1*}, 河原 純 ² Tatsuhiko Saito ^{1*}, Jun Kawahara ²

1 防災科学技術研究所, 2 茨城大学理学部

近年,地震波動伝播の研究で、2点で観測されるノイズの相互相関関数から2点間のグリーン関数を導出する,地震波干渉法が大きな注目を集めている[Campillo and Paul 2004 Science].これによって,地震のない場所であっても,常時微動の解析から地震波伝播過程を評価でき,グリーン関数の評価および地下構造探査へと応用されている.津波研究においても,正確な津波グリーン関数の評価は,津波波源逆解析,津波到来予測に欠かすことの出来ない重要なものである.通常,津波グリーン関数は,海底地形データを利用し,数値シミュレーションによって精度良く求められる.しかし,必ずしも数値シミュレーションから求めた伝播過程で,観測記録を完全に説明できているわけではない.例えば,2010年チリ地震の際の津波の日本における到達時刻は,理論予測よりも30分程度遅れている[藤井・佐竹 2010 秋季地震学会].数値シミュレーションだけでなく,記録解析からグリーン関数が評価できれば,つまり,津波干渉法が実用化されるならば,その利益は非常に大きい.本発表では,津波干渉法の基礎理論として,2点で観測される長周期海洋波の相互相関関数と2点間の長波津波グリーン関数の関係の理論的導出を行う.特に,長波の津波を考え,海底地形が点的な散乱体として振る舞う場合の,津波グリーン関数の理論的導出をボルン近似に基づいて行う.本論で示す理論的枠組みは,地震波干渉法を目的とした Sato [2009 GJI] に従っている.ただし,津波問題の特有の条件として,2次元の波動伝播,非等方な散乱パターンへの拡張となっている.

キーワード: 津波, 理論 Keywords: Tsunami, Theory

¹NIED, ²Faculty of Science, Ibaraki University

(May 22-27 2011 at Makuhari, Chiba, Japan)

©2011. Japan Geoscience Union. All Rights Reserved.

SSS027-02 会場:105

時間:5月22日11:00-11:15

濃尾平野の地震基盤構造推定への自己相関解析の適用 Application of auto-correlation analysis to the estimation of the seismic basement structure beneath the Noubi Plain

渡辺 俊樹 ^{1*}, 清水 英彦 ², 飛田 潤 ¹, 阿部 進 ³, 白石 和也 ³ Toshiki Watanabe^{1*}, Hidehiko Shimizu², Jun Tobita¹, Susumu Abe³, Kazuya Shiraishi³

1 名古屋大学大学院環境学研究科, 2 名古屋大学理学部, 3(株) 地球科学総合研究所

Seismic interferometry is a recently established method to obtain a seismic response from auto- or cross-correlation of seismograms. Claerbout (1968) proposed that the auto-correlation of a transmitted seismogram from a source at depth and a surface receiver is equivalent to the reflected seismogram from a surface source and the receiver at the same location. Since seismic interforometry does not require artificial sources, it recently attracts attention as a new exploration method of subsurface structure. Yoshimoto et al. (2008) applied this method and obtained the basement structure beneath the Kanto Plain.

In this study, we applied the auto-correlation analysis to the strong-motion seismograms of local earthquakes observed at the seismic stations in and around the Noubi Plain in order to estimate the seismic basement structure.

The basic procedure is as follows. First, we extracted the transverse (SH-wave) component from the horizontal components of the record of each station. Then, the acceleration waveform were double-integrated to the displacement waveform after applying a high-pass filtering. At each station, the auto-correlations of the time-windowed displacement waveform were stacked to improve the S/N ratio. We investigated the frequency and the shape of the high-pass filter, the length of the time-window and the effect of normalization of auto-correlation to obtain the suitable result. In addition, we applied the deconvolution process to remove the source function of each earthquake. Two different procedures, the deconvolution before and after auto-correlation were examined.

In the synthesized seismic reflection section, we found some prominent phases with negative amplitudes. We compared the section to the 3D velocity structure model beneath the Noubi Plain which was compiled by Aichi Prefecture based on the gravity map and partially on the seismic reflection and refraction survey and borehole records. The prominent phases correspond to the reflection from the top of the seismic basement. The dip of the reflector coincides with the dip of the basement of the velocity structure model, although its depth is slightly deeper than the depth of basement of the model. The reflection section may indicate the existence of the velocity boundary in the shallow sediment unexpressed in the structure model. The auto-correlation section also agrees with the receiver function section. The auto-correlation shows higher resolution than the receiver function in the depth section. Therefore, the seismic interferometry is beneficial in exploration of the subsurface structure using natural earthquakes. In order to improve the accuracy of the subsurface structure, more dense distribution of seismic stations are needed.

We are grateful to Aichi prefecture, Nagoya city and NIED for the use of the strong-motion seismograms observed in the area of interest.

キーワード: 地震波干渉法, 自己相関解析, 濃尾平野, 基盤構造, レシーバ関数

Keywords: seismic interferometry, auto-correlation analysis, Noubi Plain, basement structure, receiver function

¹Nagoya University, ²Nagoya University, ³JGI, Inc.

(May 22-27 2011 at Makuhari, Chiba, Japan)

©2011. Japan Geoscience Union. All Rights Reserved.

SSS027-03 会場:105

時間:5月22日11:15-11:30

ノイズ自己相関解析に基づく東北日本の深部地震波反射構造 Deep seismic images revealed by autocorrelation analysis of ambient noise beneath the northeastern Japan subduction zone

伊藤 喜宏 1* , 汐見 勝彦 2 , 中島 淳一 1 , 日野 亮太 1 Yoshihiro Ito 1* , Katsuhiko Shiomi 2 , Junichi Nakajima 1 , Ryota Hino 1

1 東北大学大学院理学研究科, 2 防災科学技術研究所

We obtain seismic reflection images using autocorrelation functions (ACFs) of the ambient noise in the northeastern Japan subduction zone. ACFs with a time-window length of 120 s are calculated from the continuous seismic records obtained at each seismic station during an analysis period of 300 days. The ACFs show some distinct signals with relatively large amplitude without any significant temporal variations during the analysis period. The ACFs show the signals at a large lag time of 20?50 s as well as a small lag time of 10 s. The lag time of 10 s corresponds to the travel time of the PP reflection arrival from the continental Moho discontinuity. The signals with the large lag times between 30 and 50 s corresponding to the back-scattered signals from the mantle wedge or the plate boundary are identified clearly at stations located in the back-arc side. In the ACF records from the fore-arc side stations, weak signals interpreted as the reflection from the plate boundary are apparent in a lag time range from 20 to 30 s. These results suggest that it is possible to retrieve Green's functions reflecting seismic velocity heterogeneity related to the subducting Pacific slab from the ACFs. We construct depth migrated images using the ACFs to obtain the reflectivity profile by assuming that the ACFs represent Green's functions composed of a random wavefield excited by a stochastic sources or scatterers distributed in the vertical or near-vertical direction from stations and that they can be treated as zero-offset seismic traces recorded at each of the stations. The depth migration images show a relatively transparent structure within the subducting pacific slab, whereas a reflective structure within the mantle wedge characterized by the low velocity zones corresponding to the wedge flow imaged by 3-D seismic velocity tomography.

キーワード: 地震波干渉法, 雑微動, 自己相関, 反射断面, 沈み込み帯

Keywords: Seismic interferometry, ambient noise, autocorrelation, reflection profile, subduction zone

¹Tohoku University, ²NIED

(May 22-27 2011 at Makuhari, Chiba, Japan)

©2011. Japan Geoscience Union. All Rights Reserved.

SSS027-04 会場:105

時間:5月22日11:30-11:45

プレート沈み込み帯における OBS 探査記録からの地震波干渉法イメージング Seismic interferometric imaging from OBS survey data in the plate subduction zone

白石 和也 ^{1*}, 淺川栄一 ¹, 阿部進 ¹, 藤江剛 ², 佐藤壮 ², 小平秀一 ², 岡本拓 ¹, 菊池伸輔 ¹ Kazuya Shiraishi ^{1*}, Eiichi Asakawa ¹, Susumu Abe ¹, Gou Fujie ², Takeshi Sato ², Shuichi Kodaira ², Taku Okamoto ¹, Shinsuke Kikuchi ¹

1(株) 地球科学総合研究所, 2(独) 海洋研究開発機構

¹JGI, Inc., ²JAMSTEC

海上における地殻構造探査では、マルチチャンネル反射法地震探査 (Multi-Channel Seismic reflection survey, MCS) による詳細な構造探査とともに、OBS(Ocean Bottom Seismograph) を用いた広角反射法による深部構造探査が一般的に行なわれている。OBS を用いた解析においては、主に深部構造を対象とした広角反射の解析やトモグラフィを含む屈折法解析が主な解析手法として利用されている。また、OBS と MCS の統合イメージング処理も実用化に向けた取り組みがなされている。しかし、OBS データに含まれる反射波を直接イメージングに利用する場合には、OBS 位置を中心とする限られた領域しかイメージングすることができず、受振点間隔 1km 程度の高密度調査であっても海底下浅部での構造の把握が困難である。本研究では、南海トラフ・紀伊半島沖で取得された OBS 探査記録に対して地震波干渉法を適用し、反射波プロファイルを構築することによって、海底面直下の堆積構造からプレート沈み込み帯の深部の構造まで明瞭に捉えることに成功したので報告する。

地震波干渉法は、発震点または受振点を共通とする地震波記録に対して、トレース間の干渉処理によりそれぞれ元の受振点位置または発震点位置を仮想的な震源とする波形記録を合成することができる。海上エアガンおよび海底地震計を用いた調査では、共通受振点記録に対して本手法を適用した場合、海上の全ての発震点位置を仮想的な発震点および受振点とする海上調査記録を合成できる。本手法の特徴は、海面に起因する多重反射波を干渉処理により時間シフトし、複数の干渉波形のフェーズを重ね合わせることにより一次反射波を強調抽出し反射波記録を得る点にある。現在では干渉処理について相互相関型やデコンボリューション型など複数の方法が提唱されている。さらに、合成された反射波記録に対しては、CMP 重合法や重合前マイグレーション処理などによって地下構造のイメージングを行なう。

今回解析対象とするのは、2004年に JAMSTEC によって取得された、南海トラフ・紀伊半島沖においてトラフ軸に直交する測線長約 175km の高密度 OBS 調査のデータである。OBS は稠密区間では 1km 間隔、それ以外では 5km または 10km の間隔で 74 台設置され、200m 間隔 878 点のエアガン発震によりデータが取得された。OBS 回収後発震時刻毎に 切り出された有効記録長 90 秒のうち、多重反射波が顕著な発震後 30 秒までの記録に対して、振幅補償処理を施した利用可能な 71 組の共通受振点記録に対して干渉処理を行なった。その結果、全てのエアガン発震点位置を仮想発震受振点とする 878 × 878 トレース、記録長 20 秒の擬似反射波記録を合成した。その記録に対して CMP 重合法を適用して、重合後時間マイグレーション後に深度変換を行い反射波プロファイルを得た。

地震波干渉法を用いた反射波イメージングにより、調査エリア全域における海底面の形状、前弧堆積盆と付加体前縁部の堆積構造、沈み込んでいく海洋プレートと島弧地殻とのプレート境界、プレート境界からの分岐断層などが明瞭にイメージングされた。OBS データの周波数帯域は MCS 調査に比べて低く、反射波プロファイルの分解能は劣るものの、OBS データのみの利用で浅部から深部に至る地殻構造イメージングができたことはとても意義深い。

ここでは、複数提唱されている干渉処理の方法に関して相互相関型とデコンボリューション型について比較を行なった。デコンボリューション型干渉法では相互相関型に比べて波形干渉により得られた仮想震源記録上において直接波と反射波が明瞭であり、重合結果についても分解能が高く干渉ノイズの出現が抑えられた結果となることを確認した。また、受振点間隔 1km の高密度 OBS 調査に対して、一般的な OBS 展開による調査を想定して間隔を 5km と 10km の場合についてデシメーションテストを行なった。受振器間隔を広くしたデータを利用するに伴い、特に浅部の構造について分解能の低下や反射境界の連続性低下などが確認された。しかし、間隔を 10km とした場合においても、前弧堆積盆やプレート境界、分岐断層などの特徴的な構造については明らかに識別されて良好な結果を得たといえる。

本手法は、OBS 調査データのみから受振点間のイメージングのギャップなく海底面から深部までの構造を探る新たな解析手法として有効な手段となる。また、今後は MCS データ、OBS 調査の元データ、OBS データから地震波干渉法により合成された記録を複合的に用いて、重合前深度イメージングにより浅部から深部に至る統合的深度イメージを作成することを目標とする。

キーワード: 地震波干渉法, OBS 探査, 反射法地震探査, 南海トラフ, プレート沈み込み帯

Keywords: seismic interferometry, OBS survey, seismic reflection survey, Nankai trough, plate subduction zone

(May 22-27 2011 at Makuhari, Chiba, Japan)

©2011. Japan Geoscience Union. All Rights Reserved.

SSS027-05 会場:105

時間:5月22日11:45-12:00

1999 年台湾集集地震に伴う地震波伝播の変化:I 繰り返し地震の波形変化 Seismic wave propagation damage caused by the 1999 Chi-Chi, Taiwan earthquake: I. Repeating earthquakes observation

Chen Kate Huihsuan^{1*}, 古村 孝志 ², Justin Rubinstein³, Ruey-Juin Rau⁴ Kate Huihsuan Chen^{1*}, Takashi Furumura², Justin Rubinstein³, Ruey-Juin Rau⁴

- 1台湾師範大学地球科学科、2東京大学地震研究所、3米国地質調査所、4台湾成功大学理学院地球科学科
- ¹National Taiwan Normal University, ²ERI, Univ. Tokyo, ³United States Geological Survey, ⁴National Cheng Kung University, Taiwan

1.台湾東部で観測される小繰り返し地震

台湾東部の深さ $10\sim20~\rm km$ では、 $1991~\rm fr}\sim2007~\rm fr$ にかけて $M3.8\sim4.6~\rm on$ 規模の小繰り返し地震(相似地震)が発生している(Chen et al, 2009)。これらの繰り返し地震の地震波形は台湾全土の広帯域および短周期地震観測網で記録され、高い相互相関係数 $(0.99~\rm kl)$ で波形が一致する。ところが、 $1999~\rm fr$ に台湾中部で発生した集集地震(M7.6)のを境に、震源域近傍の観測点では繰り返し地震の波形が大きく変化し、相互相関係数が大きく低下した。この変化は高周波数地震動ほど大きく、たとえば震源域の南東端直上にある $SSLB~\rm kl$ 広帯域観測点では、震源距離 $90~\rm km$ の繰り返し地震の相互相関係数が周波数 $1~\rm Hz$ では $0.99~\rm hc$ $0.95~\rm kl$ に、そして $4~\rm Hz$ では $0.99~\rm hc$ $0.95~\rm kl$ に低下した。また、波形の変化は、地震波の到着時から遅くなるほど大きく、特に $8~\rm kl$ $1.8~\rm kl$ $1.8~\rm$

2.台湾集集地震発生により崩された地震波動伝播

繰り返し地震の波形変化が見られる場所は、集集地震の震源域近傍に限られる。このことから、波形変化の原因は繰り返し地震の震源特性の変化(位置、メカニズム、近傍の構造など)によるものではなく、伝播経路または観測点直下の構造変化によるものと考えられる。

大地震に伴う地下構造として、まず強震動による地滑りや地表断層などの地形変動や液状化や剥離などによる表層地盤の応答特性の変化が考えられる。しかし、波形変化が観測された地点は、大きな地震地殻変動が現れた断層面直上や、強い加速度が発生した台湾西部の平野の一部ではなく、震源域を取り囲む $50~\rm km*80~\rm km$ のやや範囲である。広域に見られた波形変化を説明するには、地表だけでなくやや深部 ($10~20~\rm km$) の速度構造変化を疑う必要があろう。たとえば、断層面上のアスペリティ付近では、断層破壊により低速度のガウジ層が生じている可能性があり、これが波動伝播に影響を与えている可能性もある。

なお、繰り返し地震の波形変化と相互相関係数の低下は、2007年時点ではまだ集集地震前のレベルにまで戻っていないものの、数年から数十年をかけて徐々に回復しつつある。このような、地震波速度異常の回復にかかる時定数は、その異常の場所と原因を特定する鍵になりそうである。たとえば、数年の時定数は、強震動に伴う地形変動(永久変位)や液状化等による地盤応答特性の回復(数日~数ヶ月?)とは大きく異なり、むしろ地下深部の断層面の固着や応力回復過程の可能性を示唆するものである。

3. 地下構造変化と地震波動伝播の変化の対応

以上の解析結果に対して、次に地震波伝播シミュレーションに基づき繰り返し地震の波形変化とその原因を探る(古村・Chen、2011 本大会発表)。

参考文献

K. H. Chen, Rau, R. J., and Hu, J. C. (2009). Variability of the repeating earthquakes behavior along the Longitudinal Valley fault zone of eastern Taiwan, J. Geophys. Res., 114, B05306, doi:10.1029/2007JB005518.

キーワード: 繰り返し地震, 断層強度回復, 台湾集集地震

Keywords: repeating earthquake sequence, fault healing, Chi-Chi earthquake

(May 22-27 2011 at Makuhari, Chiba, Japan)

©2011. Japan Geoscience Union. All Rights Reserved.

SSS027-06 会場:105

時間:5月22日12:00-12:15

1999年台湾集集地震に伴う地震波伝播の変化: II. 繰り返し地震の FDM シミュレーション

Seismic wave propagation damage caused by the 1999 Chi-Chi, Taiwan earthquake: II. FDM simulation of the repeating earth

古村 孝志 ^{1*}, Kate Huihsuan Chen² Takashi Furumura^{1*}, Kate Huihsuan Chen²

1 東京大学地震研究所, 2 台湾師範大学地球科学科

1.台湾集集地震に伴う、繰り返し地震の波形変化

台湾東部の深さ $10\sim20~\rm km$ では、 $1991~\rm fractor models$ 年にかけて $M3.8\sim4.6$ の規模の小繰り返し地震(相似地震)が発生しているが、その地震波形が $1999~\rm fractor fractor$

2.繰り返し地震の FDM シミュレーション

集集地震後の波形変化の原因を探るために、台湾の不均質地下構造モデルを用いて地震波伝播の差分法 (FDM) シミュレーションを行ない、観測された波形変化の特色の再現を試みた。繰り返し地震の震源から集集地震の震源域を横切り、そして観測点にいたる北緯 24 度付近の東西断面 $200 \mod 100 \mod 100$ km を走時トモグラフィや反射法探査に基づく台湾標準モデルを用いて格子間隔 $50 \mod 10$ で作成した。シミュレーションモデル上部には不規則な表層地形を置き、また地殻・マントルの物性値にはランダム揺らぎを与え、16 % 10 次精度のスタガード格子 2 % 10 が、周波数 $10 \mod 10$ 日波数地震動を計算した。

地下構造変化の前後の2つのシミュレーション結果を比較し、観測と同様の処理で地震波形の相互相関係数の時間・空間変動と周波数特性を求めた、また2つのシミュレーション結果の差から「波動場スナップショット差分」を求めて波動場の変化を可視化した。

評価に先立って、まず、繰り返し地震の発生場所と断層メカニズムのわずかな変化が地震波形変化に与えた可能性を検討した。震源の深さと断層傾斜角をそれぞれ1%程度変動させ、地震波形の相互相関係数の変化を求めたところ、震源距離のよらず全観測点にわたって相関係数が著しく低下(0.8以下)することが確認できた。これより、震源特性の変化による波形変化は、伝播経路の変化によるものと明確に区別できることが確認された。また、通常の繰り返し地震の高い相互相関係数(>0.99)は、震源特性の極めて良い一致を意味していることも再確認できた。

3.断層深部の物性変化による波形の変化?

次に、震源域の直上の $20~\rm km$ の範囲に厚さ $0.4~\rm km$ の低速度層 (-10%) を置いたモデルを用いて地震波伝播を計算した。その結果、低速度層の範囲を超えて東西 $100~\rm km$ の広い範囲に波形変化の影響が現れた。波形変化は、S 波到着時から $2~\rm G$ 倍以上経過した S 波コーダ後半部で大きく、その開始時刻は震源距離によらずほぼ一定であった。「波動場スナップショット差分」を見ると、表層の低速度層から放射される強い散乱波が S 波コーダの乱れを起こしていることが分かった。しかし、観測では S 波到達時の直後から波形の乱れが起きており、本計算結果とは一致しない。また、本計算において影響が現れた範囲もやや広い。

同じ規模の低速度層を、大きな断層滑りが起きた集集地震の断層面のやや深部(10-20 km)に置いたモデルを用いて計算を行った。このモデルでは、地下深部で傾斜した低速度層面に添って S-P 変換波や S-S 反射波が強く発生し、断層面の西側地表に向けて S 波の後続相を強く放射させるほか、さらに低速度層が強い散乱場を作り波形を乱す過程が確認できた。その結果、震源域直上と西側の観測点では S 波の到着直後から波形が変化し、その特徴は観測を良く説明する。

キーワード: 繰り返し地震、台湾集集地震、地震動シミュレーション

¹ERI, University of Tokyo, ²National Taiwan Normal University

Keywords: repeating earthquake, Taiwan Chi-Chi earthquake, FDM simulation

(May 22-27 2011 at Makuhari, Chiba, Japan)

©2011. Japan Geoscience Union. All Rights Reserved.

SSS027-07 会場:105

時間:5月22日12:15-12:30

南極・昭和基地の脈動と微気圧変動からみた大気-海洋-固体地球相互作用 ATMOSPHERE - OCEAN - SOLID EARTH INTERACTION FROM MICROSEISMS AND MICROBAROMS AT SYOWA STATION, ANTARCTICA

金尾 政紀 ^{1*}, 石原 吉明 ², 山本 真行 ³, 豊国 源知 ¹ Masaki Kanao ^{1*}, Yoshiaki Ishihara ², Masa-yuki Yamamoto ³, Genti Toyokuni ¹

1国立極地研究所,2国立天文台,3高知工科大学

Microseisms and microbaroms originated from the Southern Ocean are celarly recorded by both the broadband sesimograph and infrasound sensor deployed at Syowa Station (39E, 69S), East Antarctica. A continuous images are achieved for the double-frequency microseism / microbaroms (DFM) with peaks between 4 and 10 s during a whole season. The peak amplitudes of DFM reflect the large influence of winter extratropical cyclonic storms (brizzard) in the Southern Ocean. The DFM have relatively lower amplitudes during austral winters, caused by the larger amount of sea ice extent around the Lutzow-Holm Bay with decreasing the ocean wave loading effects. On the contrary, single-frequency microseism (SFM, with periods between 12 and 30 s) can be observable only by seismograph under excellent storm conditions particularly in local winter. On the infrasound data, moreover, long stand signals are identified with harmonic over tones at a few Hz to lower most human audible band. It probably related to the ice vibrations in the vicinity of the Station. Microseism measurements are a useful proxy for characterizing ocean wave climate and global storm intensity, complementing other estimates by ocean buoys or satellite measurements. A continuous monitoring both by broadband seismograph and infrasound observations firmly contribute to the Federation of Digital Seismographic Network (FDSN) and the Comprehensive Nuclear-Test-Ban Treaty (CTBTO) in southern high latitude, together with the Pan-Antarctic Observations System (PAntOS) under the Scientific Committee on Antarctic Research (SCAR).

キーワード: 昭和基地, 脈動, 微気圧変動, 海洋気候, 大気海洋固体地球システム

Keywords: Syowa Station, Microseismic Noise, Infrasound Microbaroms, ocean wave climate, atmosphere-ocean-solid earth system

¹NIPR, ²National Astronomical Observatory, ³Kochi University of Technology

(May 22-27 2011 at Makuhari, Chiba, Japan)

©2011. Japan Geoscience Union. All Rights Reserved.

SSS027-08 会場:105

時間:5月22日12:30-12:45

小笠原海台南東の北西太平洋海盆における地震波速度構造 Seismic structure in the Northwest Pacific basin sortheast of the Ogasawara Plateau

辻野 良輔 ^{1*}, 藤江 剛 ², 島 伸和 ³, 小平 秀一 ², 西澤 あずさ ⁴, 金田 謙太郎 ⁴ Ryosuke Tsujino^{1*}, Gou Fujie², Nobukazu Seama³, Shuichi Kodaira², Azusa Nishizawa⁴, Kentaro Kaneda⁴

¹ 神戸大学自然科学研究科, ² 海洋機構 地球内部変動研究センター, ³ 神戸大学内海域センター, ⁴ 海上保安庁海洋情報部 ¹Earth Planet. Sci., Kobe Univ., ²IFREE, JAMSTEC, ³Kobe Univ. R. C. Inland Seas, ⁴Hydrogr. & Oceanogr. Dep., JCG

小笠原海台の南東の北西太平洋海盆では,多くの海底地震計 (OBS) の記録において下部地殻付近を伝搬する初動 P波 (Pg) が顕著に減衰し,S/N 比が 1 以下となる様子が認められ,速度逆転層の存在が示唆されている.トラベルタイムフォワードモデリングによって速度逆転層内の平均的な P 波速度 (V_P) は 6.4-6.6 km/s と見積もられている (Oikawa et al., 2008).本研究では,トラベルタイムフォワードモデリング (rayinvr, Zelt et al., 1992) と波形計算 (E3D, Larsen, 2000) を併用して,速度逆転層の上面と層内の V_P の上限に制約を与えた.解析に用いられたデータは,小笠原海台の南東の海盆に位置する,南西-北東方向の地震探査測線 (OGr15 測線) のものである.本測線は海上保安庁海洋情報部によって探査が行われたもので,4 成分 (上下動 1 成分・水平動 2 成分・ハイドロ フォン) を持つ OBS を用いた屈折法地震探査データと,マルチチャンネルストリーマを用いた反射法地震探査データが取得されている.ほとんどの OBS 記録で Pg フェーズが顕著に減衰している.トラベルタイムフォワードモデリングと波形計算を併用した解析の結果,速度逆転層の上面は海底下およそ 3.5-4.8 km に位置すること,速度逆転層内の V_P の上限は 6.7 km/s であることが見積もられた.これらの制約を与えた上で推定された V_P 構造は,速度逆転層内で 6.5-6.7 km/s を示し,Oikawa et al. (2008) と調和的であった.

OBS とエアガンを用いた屈折法地震探査においては , S 波速度構造 (V_S) は , 堆積層-基盤境界などで P 波から S 波へと 変換されたとみられる, PS 変換波を用いることで推定することができる. 本研究では小笠原海台南東の北西太平洋海盆 において,最上部マントルのP波速度構造とS波速度構造の比である V_P/V_S 構造を推定し,最上部マントルのS波異方 性強度を見積もった.構造推定のために用いられたデータは OGr15 測線と, 小笠原海台の南東約 270km の位置で OGr15 測線とほぼ直交する OGr13 測線のものである. OGr15 測線の水平動成分では, 最上部マントルを通過する S 波 (Sn) が見 かけ速度の大きいものと小さいものにスプリッティングしており,速い Sn の振幅がショットラインと垂直な方向で,遅 い Sn の振幅がショットラインと平行な方向で大きくなる傾向を示す. 一方で OGr13 測線では S 波スプリッティングは 見られない. 2 つの測線の MCS 記録は, 堆積層-基盤境界が南東方向(OGr13 測線)に傾斜していること, 南西-北東方向 (OGr15 測線) でほぼ水平であることを示しており, PS 変換面が北西-南東方向に傾斜していることで, OGr13 測線では 鉛直方向に振動する SV 波のみが , OGr15 測線では SV 波と水平方向に振動する SH 波両方が生まれたと推測される (Xia et~al., 2002).OGr15 測線では速い Sn と遅い Sn を用いて,2 種類の V_P/V_S 構造を推定した.推定された V_P/V_S 構造か ら見積もられた最上部マントルのS波異方性強度は,OGr13測線とOGr15測線の高速度構造との間で< 1%,OGr13測 線と OGr15 測線の低速度構造との間で最大約 9%であった.高速方向は OGr13 測線側で,これは海洋底の地磁気異常縞 模様に垂直であり,すなわち海洋底拡大方向と一致する.また本研究海域における異方性強度と海洋底拡大速度の関係 は、海洋底拡大速度が大きい領域の最上部マントルほど異方性強度が大きい傾向を持つという Oikawa et al. (2010) の提 案をサポートする.

キーワード: PS 変換波, Vp/Vs, 地震波速度異方性, 海底地震計, 速度逆転層

Keywords: PS converted wave, Vp/Vs, seismic anisotropy, ocean bottom seismograph, low velocity zone

(May 22-27 2011 at Makuhari, Chiba, Japan)

©2011. Japan Geoscience Union. All Rights Reserved.

SSS027-09 会場:105

時間:5月22日14:15-14:30

コンパウンド・マトリックス法による異方性弾性体に対するレーリー波分散曲線の 計算

計算 Computation of Rayleigh wave dispersion on anisotropic media by compound matrix method

池田 達紀 ^{1*}, 松岡 俊文 ¹ Tatsunori Ikeda ^{1*}, Toshifumi Matsuoka ¹

等方性弾性体に対する表面波分散曲線の計算はハスケル法により計算することができる。しかし、ハスケル法による計算は周波数が高くなると桁落ちが生じるため、十分高周波数まで計算することができない。この問題を解決する手法として、コンパウンド・マトリックス法が提案され、その有効性が示されている。

本研究では、コンパウンド・マトリックス法を異方性弾性体に適用することで、異方性弾性体に対するレーリー波の分散曲線を計算した。その結果、等方性同様、異方性を有する媒質に対しても、ハスケル法に比べ高周波数まで分散曲線を計算可能であることがわかった。

キーワード: 分散曲線, 異方性, コンパウンド・マトリックス法, 表面波

Keywords: dispersion curve, anisotropic media, compound matrix method, surface waves

¹ 京都大学大学院工学研究科

¹Kyoto University, Faculty of Engineering

(May 22-27 2011 at Makuhari, Chiba, Japan)

©2011. Japan Geoscience Union. All Rights Reserved.

SSS027-10 会場:105

時間:5月22日14:30-14:45

ボアホール地震波形記録を用いたS波コーダにおけるエネルギー等分配の検証 Testing equi-partition in S-wave coda using borehole seismograms

中原 恒 ^{1*}, ルドビック・マージェリン ² Hisashi Nakahara^{1*}, Ludovic Margerin²

 1 東北大学大学院理学研究科, 2 ミディピレネー観測所, フランス

はじめに

波動の全てのモードにエネルギーが等しく分配されるエネルギー等分配という状態があり、地震波干渉法が成立するための必要条件の一つと考えられている(例えば Sanchez-Sesma and Campillo, 2006). この状態では,P 波と S 波のエネルギー比が一定値に近づくことが観測されており,これはモード間の多重変換散乱が卓越するためと解釈されている(例えば Shapiro et al., 2000). 同様に,上下,水平の異なる振動成分へのエネルギー分配(粒子軌跡)も平衡状態に達することが観測されている(例えば,Hennino et al. 2001). 本研究では,近地地震のボアホール地震記録の S 波コーダを用いて,上下・水平成分へのエネルギー分配の周波数依存性を調べ,検層による地下の地震波速度構造に対してエネルギー等分配を仮定したモデル計算との比較により,S 波コーダにおいてエネルギー等分配が成立しているかどうかの検討を行う.

データ解析と結果

エネルギー等分配のモデル計算との比較

公開されている速度検層による水平成層構造に対して,エネルギー等分配を仮定して,粒子軌跡の理論計算を行う.ただし,エネルギー等分配に関して3つの異なるモデルを試した.(1)P 波,S 波の実体波のみを考え等分配とする,(2)Rayleigh 波,Love 波の表面波の基本モード,各高次モードのみを考え等分配とする,(3) 実体波,表面波のすべてのモードを考え等分配とする.理論計算を行い,観測結果と比較すると,地表観測点の粒子軌跡からは3つのモデル計算の有意な違いを見つけられなかったが,地下約100mにある地中観測点においては3つのモデル計算に有意な違いが表れた.約5Hz以下の周波数帯においては,モデル(3)が観測をもっともよく説明し,それ以上の高周波数帯ではモデル(1)が観測をもっともよく説明することが分かった.高周波数帯において表面波の寄与が減少する原因については特定できていないが,地表付近における強い減衰や,そもそも高周波における表面波の励起が小さいことなどの要因が考えられる.

まとめ

近地地震の S 波コーダにおける粒子軌跡のモデル計算により,S 波コーダにおいてエネルギー等分配が成立していると考えてもよいことを示した.また,波動場の構成成分を知るうえで,ボアホール観測点が極めて重要であることも明らかになった.エネルギー等分配を仮定できると,コーダの粒子軌跡のモデリングが容易になり,浅部地盤構造を推定する逆問題に使用できる(例えば,Margerin et al., 2009).この手法は常時微動の粒子軌跡を用いる方法(常時微動のH/V 法)と相補的に使うことができると考えられる.

謝辞 本研究では,防災科学技術研究所の Kik-net の強震記録と気象庁・文部科学省の一元化震源カタログを使用させ

¹Graduate School of Science, Tohoku Univ., ²Observatoire Midi-Pyrenees, France

ていただきました.

キーワード: エネルギー等分配, コーダ, ボアホール記録 Keywords: equi-partition, coda, borehole seismograms

(May 22-27 2011 at Makuhari, Chiba, Japan)

©2011. Japan Geoscience Union. All Rights Reserved.

SSS027-11 会場:105

時間:5月22日14:45-15:00

伊豆半島における地震波のタイムリバーサル Time reversal of seismic waves in Izu peninsula

菊池 年晃 ^{1*}, 水谷 孝一 ² Toshiaki Kikuchi^{1*}, Koichi Mizutani²

1 防衛大学, 2 筑波大院・シス情工

位相共役波に関する研究は光学の分野において始められたが、電波や超音波の分野へも進展してきた。我々は海洋音響の分野において位相共役波、及びタイムリバーサルの応用に関する研究を行っている。海中に設置した音源から音波パルスを放射して、そのパルスを離れた位置に設置したハイドロホンアレイで受波する。その受波した信号に時間反転処理を施した後に、アレイから再放射すると元の音源位置に収束する音波が形成される。そして音源位置に収束したパルスの波形は始めに放射されたパルスの波形と同一になる。今回は、このタイムリバーサル処理を 2009 年 12 月 18 日に伊豆半島中部で発生した地震波に適用し、震源における振動を求める。

地震波にタイムリバーサル処理を適用するためには解決しなければならない多くの問題がある。海洋では伝播環境、即ち音速分布は深海域においてさえ正確に把握することができる。また海面から海底に至るまでのアレイも構築できる。 更に、多くの伝播モデルも提案されている。一方、地中では詳細な伝播環境の取得が困難で、アレイの素子数が限定され、更に地震計の観測信号の適合性や伝播モデルなどの問題がある。

我々は、タイムリバーサルの適用に最も重要な要因である伝播環境を求めるために、タイムリバーサルの堅牢性を利用した逆問題法を提案した。そしてその方法で求められた伝播環境において、地震計で観測した信号に時間反転処理を施した信号を再放射して震源近傍における振動を求める。海洋におけるタイムリバーサルの堅牢性とは、音源からアレイまでの往路の伝播環境とアレイから音源までの復路の伝播環境が変化しても音源への収束性は大きく変化しないことである。また、両者の伝播環境が近づくにつれ音源に形成されるパルスの振幅が増大する。この特性を逆問題的に応用して、伝播環境を求める。

まず、震源から観測点までの距離に対する伝播時間を求め、その直線の勾配から伝播速度を求めた。P 波の伝播速度は 5633m/s であった。これらは震源から観測点までの平均速度でありタイムリバーサル処理には不十分である。震源近傍に形成されるタイムリバーサルパルスは、理論的には、震源から観測点までのグリーン関数と観測点から震源までの共役グリーン関数と震源振動のスペクトルとの積で表される。震源から観測点までのグリーン関数と震源振動のスペクトルとの積は観測点で受信した信号に反映される。一方、受信した信号を時間反転した信号と観測点から震源に至る共役グリーン関数との積は震源に形成されるパルスに反映される。しかし、観測点から震源に至るグリーン関数は未知である。そこでタイムリバーサルの堅牢性を利用する。まず、伝播環境を平均速度からなる均一層と仮定して伝播モデルを用いてグリーン関数を求め震源近傍における圧力変動を求める。ここで伝播モデルには放物型方程式法を用いる。このモデルに対応して、ここではP波のみに対する処理を行う。

震源に近い伊東から距離約 30km の戸田までの 12 地点で受信した信号にタイムリバーサル処理を行った。海中と異なり地中には地層の不連続や断層も多く存在する。そこで、深度方向と距離方向に速度の不連続層を想定してタイムリバーサル処理を行い震源に形成されるパルスの形状を調べた。形成されたパルスの立ち上がりは、震源に近づくに従って時間軸ゼロに近づいた。即ち、タイムリバーサルの原理が基本的に成立していることが明らかである。しかし、速度構造の変化に対して、タイムリバーサルパルスの系統的な変化は見られなかった。即ち、より詳細な伝播環境の把握が必要である。

海中の音速構造は温度や塩分及び潮流によって変化するが、全海域に対して同一に寄与するのは圧力である。地中の速度構造にも圧力の影響があると仮定して、地表から深度 7000m まで伝播速度を単調に増加させる。その速度勾配をパラメータとして伝播環境を変化させ、タイムリバーサルパルスの振幅変化を求める。速度勾配を 0.02 から 0.20 /s まで変化させた結果、パルスの振幅が系統的に変化して、ある勾配で振幅が最大になった。しかし、観測点によって振幅が最大になる勾配に違いか生じた。

韮山の観測点では速度勾配が 0.14 /s の場合に振幅が最大になった。この速度勾配を持つ伝搬環境で、震源から観測点までの伝播経路を求めた結果、震源の深度 3800m から水平方向に放射された波は距離 17km 以遠で観測点に達し、水平より上方に放射された波はそれより近い距離で観測点に達することが分かった。このことから震源と観測点の距離関係によって、伝播環境を更に調整する必要があることが分かった。

この研究では、防災科学技術研究所の Hi-net からのデータを利用させていただきました。ここに謝意を表します。

¹National Defense Academy, ²Acoust. Lab., Univ. Tsukuba

キーワード: タイムリバーサル, 位相共役, 震源振動, 地震波伝播, 水中音響

Keywords: Time reversal, Phase conjugation, hypocenter vibration, Seismic wave propagation, Underwater acoustics

(May 22-27 2011 at Makuhari, Chiba, Japan)

©2011. Japan Geoscience Union. All Rights Reserved.

SSS027-12 会場:105

時間:5月22日15:00-15:15

弾性波速度・減衰の周波数依存性 - 地震波帯域での検討 Frequency Dependency of Elastic Wave Speed and Attenuation - in seismic wave range -

川方 裕則 ^{1*}, 土井 一生 ¹, 吉光 奈奈 ¹, 高橋 直樹 ² Hironori Kawakata ^{1*}, Issei Doi ¹, Nana Yoshimitsu ¹, Naoki Takahashi ²

1 立命館大学理工学部, 2 三井住友建設株式会社

弾性波速度や減衰といった岩石の主要物性は、地球の内部構造推定にとって必要不可欠な情報である。一般に、室内で岩石試料を用いて行われる弾性波計測では $100~\rm kHz$ ~数 MHz の周波数帯域でおこなわれており、地震波帯域とは何桁もかけ離れている。これらの何桁にもわたる周波数帯域において弾性波速度や減衰が一定値を示すかどうかはよく分かっておらず、物質の同定をおこなう際には困難が生じる。完全にこれらの周波数帯域にわたって弾性波速度を推定することは難しいが、実験室内において弾性波計測と周期的載荷を併用することにより、ある程度広い帯域にわたって弾性波速度・減衰を推定することは可能である。川方・他 (2010・地震学会秋季大会) では、弾性波計測により $100~\rm kHz$ から 2MHz までの周波数帯において、弾性波速度の推定方法を検討した。本研究では、岩石試料に周期的載荷をおこなうことによって、地震波帯域 ($0.1~10~\rm Hz$) における応力・ひずみ関係を調べ、複素弾性率を通して弾性波速度・減衰を定量的に推定するとともに、これらがどの程度周波数依存性を示すかを検討した。

円筒形に整形されたウェスタリー花崗岩試料に軸変位計と周変位計を取り付け、0.1~10 Hz の周波数帯で周期的載荷をおこなった。荷重は内部ロードセルで計測し、試料に加えられた軸応力と変位との関係から複素弾性率を推定した。その結果、絶対値には数%程度の正の周波数依存性が認められたが、位相ずれには顕著な周波数依存性は認められなかった。

キーワード: 室内実験, 周期的載荷, 弾性波速度, 弾性波減衰, 周波数依存性

Keywords: laboratory experiment, cyclic loading, elastic wave speed, elastic wave attenuation, frequency dependence

¹Ritsumeikan University, ²Sumitomo Mitsui Construction Co., Ltd.

(May 22-27 2011 at Makuhari, Chiba, Japan)

©2011. Japan Geoscience Union. All Rights Reserved.

SSS027-13 会場:105

時間:5月22日15:15-15:30

矩形連続波 - 岩石物性(弾性波速度)測定への応用 Square waves - application for the rock mechanics

大久保 慎人 1* Makoto OKUBO1*

1 東濃地震科研

¹TRIES

はじめに

岩盤を構成する物質の剛性率及びエネルギー損失といった岩石物性は,伝播する弾性波の速度や減衰(Q)によって推定することができる.過去,多くの弾性波速度の推定がパルス透過法(JGS2110-1998 など)や周波数変調式連続波透過法(ACROSS など)によって行われてきた.しかしながら,既往の方法は減衰や周波数応答を評価できなかったり,測定および解析が煩雑であったりといくつかの課題を抱えていた.本研究では,より簡便に多くの情報を含む岩石物性(弾性波速度)測定をめざし,矩形連続波を用いた解析手法を提案する.矩形連続波を用いた解析では周波数変調方式と異なり,発振周波数を限定することで測定,解析を簡便にすることができ,パルス透過法ではできなかった減衰を含む周波数応答が評価可能である.

矩形連続波

本研究で利用する矩形連続波(Square wave)とは方形波とも呼ばれる波である.電子工学や信号処理の分野では,正確な周期で 2 つの振幅値を高速に遷移するため,タイミング基準に使用される.時系列では 2 値を遷移する単純な波形の矩形連続波であるが,周波数領域においては多数の周波数成分を持つ.一般に矩形連続波は周波数領域において,基本波(周波数: f_1)とその奇数次高調波(周波数: f_{2k-1})の和として表される.矩形連続波に含まれる高調波成分の振幅は基本周波数の振幅の 1/(2k-1) であり,全ての周波数で位相はすべて同位相である.

$$X_{Square}(t) = (4/) \cdot \sin(2 - (2k-1)f_1t)/(2k-1)$$

 $k=1$

利点

矩形連続波を岩石物性(弾性波速度)測定に用いる利点は,パルス透過法とほぼ同様の測定系を利用でき,測定系が単純なシステムで構成できることである.電気的に矩形波を生成することは容易であるため,高周波の周波数応答が良い発振機器さえ使用できればよい.複雑な測定系では誤差要因が指数関数的に増大し,結果的に測定の精度が低下する.また,矩形連続波に含まれる周波数は基本周波数とその奇数次高調波に限られているため,発振した周波数に隣り合う周波数の振幅はすべてノイズとみなすことができる.そのため,周波数を変化させるような非線形な物性を持つ場合を除き,発振周波数以外の振幅を誤差として無視することができる.したがって,観測される振幅の変化(減衰:Q)を容易に評価可能となる.さらに,発振周波数の位相がすべて同位相であることは,走時(絶対,相対)の評価にとっても優位である.高次の高調波を利用することで,位相情報から周波数による,弾性波速度の変化や特定周波数(波長)の物性も明らかにすることができる.

本発表で紹介した矩形連続波を弾性波速度測定に用いた研究は,S-TT55のセッションにて発表予定である(石井・ほか,佐野・ほか).こちらの講演も参考にしてほしい.

キーワード: 矩形連続波, 弾性波速度測定, 岩石物性, 奇数次高調波, 周波数解析

Keywords: Square waves, P-wave velocity, Rock mechanics, Odd numbered-overtone, Frourier analysis

(May 22-27 2011 at Makuhari, Chiba, Japan)

©2011. Japan Geoscience Union. All Rights Reserved.

SSS027-14 会場:105

時間:5月22日15:30-15:45

固液共存系の MRI 測定に基づく波動伝播シミュレーション(その 2) Numerical simulation of wave propagation in the media based on MRI measurement of partially frozen brines (Part2)

松島 潤 ^{1*} Jun Matsushima^{1*}

1 東京大学大学院工学系研究科

We used partially frozen brine as a solid-liquid coexistence system to investigate attenuation phenomena in laboratory experiments. Attenuation results measured from experimental data are not entirely due to the intrinsic properties of the ice-brine coexisting system; a component of attenuation due to scattering effects is also included in the estimate. The level of scattering attenuation is related to the magnitude heterogeneity of acoustic impedance between ice and unfrozen brine. We obtained a series of two-dimensional apparent diffusion coefficient (ADC) maps of the ice-brine coexisting system using a diffusion-weighted magnetic resonance imaging (DW-MRI) technique. A series of two-dimensional MR slices of the ice-brine coexisting system exhibits strongly heterogeneous characteristics. The purpose of this study is to characterize scattering phenomena on synthetic data generated from the information of the microstructure of an ice-brine coexisting system. We constructed a synthetic seismic data set propagating through two-dimensional media based on the ADC maps, and generated synthetic data with a second-order finite difference scheme for the two-dimensional acoustic wave equation. Quantitative characterization of heterogeneities of two-dimensional MR slices and correlation with scattering attenuation results is helpful to understand the variation of attenuation with azimuth. We quantified the microstructure of an ice-brine coexisting system using spatial autocorrelation functions (ACF) whose shape is directly related to microstructural spatial changes.

キーワード: 地震波散乱, 波動伝播シミュレーション, 減衰, 不均質性, 核磁気共鳴イメージ測定 Keywords: seismic scattering, seismic propagation simulation, seismic attenuation, heterogeneity, MRI

¹The University of Tokyo

(May 22-27 2011 at Makuhari, Chiba, Japan)

©2011. Japan Geoscience Union. All Rights Reserved.

SSS027-15 会場:105

時間:5月22日15:45-16:00

高周波数地震動への地形による地震波散乱の影響

Effect of seismic wave scattering due to the heterogeneous topography on the high-frequency seismic wavefield

武村 俊介 1*, 古村 孝志 2

Shunsuke Takemura^{1*}, Takashi Furumura²

- 1 東大地震研, 2 東大情報学環総合防災情報研究センター
- ¹ERI, the Univ. Tokyo, ²CIDIR, the Univ. Tokyo

はじめに

周波数 1~Hz を超えるような高周波数地震動は、地殻・マントルなどの大きなスケールの構造だけでなく、内部に存在する数百 m ~ 数 km 程度の小さなスケールの不均質構造(以下、短波長不均質構造)および地表地形による地震波散乱の影響を強く受ける。そのため、コンピュータシミュレーション等により高周波数地震動の伝播特性を正しく再現するためには、短波長不均質構造の分布特性の詳細なモデル化が重要である(例えば、Takahashi et al., 2009)。我々はこれまで地殻・マントル内の短波長不均質構造を導入した数値シミュレーションを実施し、高密度地震観測との比較からその有効性を評価してきたが(Takemura et al., 2009; Takemura and Furumura, 2010 年日本地震学会)、今回は複雑な表層地形を含んだ 3 次元差分法による地震動シミュレーションを行い、地形による地震波散乱の効果を定量的に評価し、短波長不均質構造による効果と比較する。

3次元差分法による地震動シミュレーション

地震動シミュレーションでは、 $128 \text{ km} \times 128 \text{ km} \times 64 \text{ km}$ の計算領域を、水平方向 0.1 km、鉛直方向 0.05 km の格子間隔で離散化し、空間 4 次・時間 2 次精度のスタッガード格子による並列差分法を用いて計算を行った。表層地形には国土地理院の 50 m メッシュの標高データを利用し、中国・四国地方の地表面形状をモデル化した。地殻・マントルの短波長不均質構造(媒質の速度揺らぎ)による地震波散乱の影響も同様に評価するために、指数関数型の自己相関関数で特徴づけられるランダム不均質(相関距離 a=5 km、ゆらぎの強さ ?=0.05)をモデルに組み込んだ。

計算領域の中心の深さ 10 km の位置に爆発型の P 波震源を置いた。なお、均質媒質を伝わる P 波は radial (R) および vertical (V) 成分にのみ振幅を持つことが期待されるが、不均質媒質中では地震波散乱や回折などの効果により、transverse (T) 成分にも P 波振幅が現れる。従って、T 成分における P 波の強度が不均質性の指標となる (例えば、Kubanza et al., 2007; Takemura and Furumura, 2010 年日本地震学会)。本研究では、3 次元地震動シミュレーションまたは観測波形の 3 成分記録から、P 波初動 1 秒前から 3 秒間の T 波エネルギー比を P 波 Energy Partition (P 波 EP) と定義し、複雑な地形 や地殻・マントルの短波長不均質構造が P 波 EP に与える影響を調査した。

シミュレーション結果

半無限媒質に対して、1)ランダム短波長不均質構造を加えたモデル、2)複雑な表層地形を考慮したモデル、3)この両方を加えたモデルの3つを用いて地震波動伝播シミュレーションを行い、周波数 2-4 Hz の帯域において P 波 EP の距離変化を求めて比較した。その結果、1)のモデルでは、P 波 EP は震源距離の増大に伴い増加し、震源距離 $50~\rm km$ で $0.05~\rm Hz$ を回値となった。次に、2)のモデルでは、P 波 EP が $0.02~\rm Hz$ となったが、その値は距離に依らず一定であった。3)のモデルでは、短波長不均質構造と地形の二つの効果の足し合わせにより P 波 EP が大きくなり、震源距離 $50~\rm km$ で $0.07~\rm Hz$ を回値が得られた。これは西南日本で観測された値(Takemura and Furumura, $2010~\rm Hz$ 年日本地震学会)に近い。

これまでの地震動シミュレーションでは、複雑な地表面形状のモデル化は十分行われてこなかったが、高周波数地震動シミュレーションでは地表面形状の導入が必要である。

謝辞:海洋研究開発機構の地球シミュレータを使用しました

キーワード: 地震波動伝播, 実体波, 地震波散乱, 地震波動伝播シミュレーション, 地表面形状 Keywords: Seismic wave propagation, body wave, seismic wave scattering, numerical simulation, surface topography

(May 22-27 2011 at Makuhari, Chiba, Japan)

©2011. Japan Geoscience Union. All Rights Reserved.

SSS027-16 会場:105

時間:5月22日16:00-16:15

Hi-net 観測点で記録された遠地 P 波のトランスバース成分解析 Analyses of transverse component of teleseismic P-waves recorded at Hi-net stations

西村 太志 1* Takeshi Nishimura^{1*}

1 地球物理・理・東北大

Short-wavelength heterogeneities of the structure beneath Japan has been recently well studied by many kinds of analyses such as coda-Q, multi lapse time window analyses, peak time delay analyses and so on. In the present study, we evaluate the heterogeneity by analyzing transverse component amplitudes of teleseismic P-waves. Using teleseismic P-wave has a merit in that the structure of all Japan are evaluated almost at once, using the same earthquake. Radiation patterns are not necessarily considered. We analyze the data from 2002 to 2009 recorded at Hi-net station by NIED. We measure the ratio of the energy in transverse component to the total energy of the P-waves, which is theoretically related to the strength of short-wavelength heterogeneity (Kubanza et al., 2006). The earthquakes with a magnitude of 5.5-6.6 at depth > 300 km are analyzed, and signals of P-waves from these earthquakes are band-pass filtered at 0.25-0.5, 0.5-1.0, 1.0-2.0, 2.0-4.0, 4.0-8.0 Hz. We select the data with a large signal to noise ratio (more than 5), and average the ratios for each station at the five frequency bands. The results obtained at these frequency bands show the following characteristics: Large ratios, which represent strong heterogeneity, are recognized mainly at around the Fossa Magna in the central Japan and the Kanto region. The western boundary of the large ratio to small ratios almost correspond to the Itoigawa-Shizuoka tectonic line. We also find large ratios along the volcanic front in the Tohoku region, and around active volcanoes in Kyushu regions. Small ratios representing week heterogeneity are observed mainly at the northern part of Hokkaido, along the Sanriku coast. The western Japan such as Chugoku and Shikoku districts are mostly characterized by week heterogeneity. Slightly large ratios may be recognized along the Median tectonic line in the Shikoku island. The spatial changes of the ratios, which reflect the generation of transverse component in P-wave, are well matched with the geological settings of Japan island.

キーワード: P波, トランスバース成分, 散乱, 不均質構造

Keywords: P-wave, transeverse component, scattering, heterogeneous structure

¹Geophysics, Science, Tohoku Univ.

(May 22-27 2011 at Makuhari, Chiba, Japan)

©2011. Japan Geoscience Union. All Rights Reserved.

SSS027-17 会場:105

時間:5月22日16:30-16:45

東北日本前弧域で発生する地震の波形にみられる S 波エンベロープのピーク遅延 Envelope broadening of S-waves from the inter- and intraplate earthquakes in the northeastern Japan forearc

古賀 祥子 ^{1*}, 伊藤 喜宏 ¹, 日野 亮太 ¹, 篠原 雅尚 ², 海野 徳仁 ¹ Shoko Koga ^{1*}, Yoshihiro Ito ¹, Ryota Hino ¹, Masanao Shinohara ², Norihito Umino ¹

1 東北大学大学院理学研究科, 2 東京大学地震研究所

It is well known that the double-planed deep seismic zone is observed within the Pacific slab subducting beneath the north-eastern Japan arc. Recently, the double-planed structure is also found in the shallow inter- and intraplate seismicity beneath the NE Japan forearc region. Appearances of observed seismograms are remarkably different between the earthquakes in the upper plane and those of the lower planes: Seismograms of the upper plane events show 1) indistinct direct P- and S- waves, 2) many later phases following direct P- and S-waves, and 3) comparatively low frequency. In contrast, seismograms of the lower plane events show 1) distinct direct P- and S- waves, 2) almost no later phases, and 3) comparatively high frequency. In this study, we evaluated the difference in the seismograms by measuring a time difference between the onset and the peak amplitude of S-wave envelope, a peak delay time. The peak delay time is mostly controlled by the strength of multiple forward scattering and diffraction due to the heterogeneous structure of short wavelength along a seismic ray path.

We analyzed seismograms recorded at the seismic stations in the forearc side of the NE Japan arc. Focal depths of the target earthquakes, the earthquakes belonging to the double-planed shallow seismic zone, were determined by using arrival times of sP depth phases recognized clearly on the seismograms. We calculated root means square (rms) envelopes of velocity seismograms of horizontal components in four frequency bands 2 - 4, 4 - 8, 8 - 16, and 16 - 32 Hz to measure the peak delay time (PDT). The measured PDTs grow as hypocentral distances increase. In order to evaluate the dependence of the PDTs on the hypocenter locations, we corrected the distance dependence of the PDT by taking deviations from a linear regression line of log-PDT against log-travel time (delta log PDTs) in each frequency band.

As a result, it turns out that the earthquakes belonging to the shallow double seismic zone can be divided into two groups according to the delta log PDTs. The delta log PDTs measured for the interplate earthquakes are significantly large and show no noticeable frequency dependency. In contrast, the intraplate events are characterized relatively small delta log PDTs. The PDTs measured for the intraplate earthquakes show positive frequency dependence: PDTs are larger for the higher frequency band. Conspicuous difference in S-wave envelopes between interplate and intraplate earthquakes indicates that the envelope shape is strongly dependent on the hypocenter locations in relation to the plate boundary. We suggest that formation of guided wave through the low velocity layer along the plate boundary contributes to considerable broadening of S-wave envelopes of the interplate earthquakes.

キーワード: 海洋リソスフェア, プレート内地震, S コーダ波

Keywords: oceanic lithosphere, intraplate earthquake, S coda wave

¹Tohoku Univ., ²ERI. Univ. of Tokyo

(May 22-27 2011 at Makuhari, Chiba, Japan)

©2011. Japan Geoscience Union. All Rights Reserved.

SSS027-18 会場:105

時間:5月22日16:45-17:15

短周期地震波の解析から推定された地球のランダム不均質構造 Random Heterogeneity of the Earth Revealed from the Analysis of Short-Period Seismograms

佐藤 春夫 ^{1*} Haruo Sato^{1*}

1 東北大学大学院理学研究科

地震の短周期成分の記録は複雑で、単純な震源過程から想像されるものとは大きく異なる.S波相のみかけ振動継続時間は、地震のマグニチュードから推定される震源継続時間よりも長く、伝播距離の増加に伴って拡大することが知られている.また、S波相の後には、コーダ波と呼ばれる波群が長い時間にわたって観測される.遠地地震のP波記録の継続時間も震源継続時間より長く、水平動 transverse 成分には波の励起が観測される.これらの短周期地震波形の特徴は、リソスフェアにおけるランダムな不均質構造による散乱に起因すると考えられ、統計的散乱理論に基づいた解析によってランダムな不均質の定量的な推定が試みられてきた.不均質構造の統計的な記述は、トモグラフィーやレシーバー関数法などによる決定的な方法と相補的に、固体地球の構造に関する知識を豊かにするものである.以下、最近の観測成果を簡潔に報告する.

短周期地震波のエネルギー伝播過程は,輻射伝達理論によって記述することができる.これは,因果律とエネルギー保存則に基づく枠組みであり,単位体積当りの散乱の強さを表す散乱係数(平均自由行程の逆数)が重要なパラメータである.これまで等方散乱を仮定したモデルが多く用いられてきたが,多重散乱領域では輸送散乱係数が等価的な等方散乱係数を表すと考えられる.世界各地での散乱係数の測定値は,1-30Hz 帯では0.001/km から0.05/km に分布し,平均で0.01/km である.活火山ではそれより2 桁近く大きく,マントルでは2 桁ほど小さいこともわかってきた.

速度ゆらぎのパワースペクトル密度が与えられれば,ボルン近似によって散乱係数を求めることができ,これを輻射伝達理論に用いて波形エンベロープを計算することができる.特に地震波の波長がランダム構造の相関距離よりも短い場合には,地震波のエンベロープ拡大はランダムな速度ゆらぎによる前方散乱や回折によるものと考えられ,Phase screen 法を統計的に拡張したマルコフ近似法によって波形エンベロープを直接導出することも可能である.速度ゆらぎのパワースペクトル密度が強いほど,散乱は強く,コーダ波の励起は大きく,直達波形の崩れは激しくなるので,逆に,観測された遠地P波波形エンベロープや近地小地震のS波エンベロープの解析から速度ゆらぎのパワースペクトル密度を推定することが可能である.遠地P波の解析からは,マントルにおけるパワースペクトル密度がリソスフェアのそれよりも小さいことが明らかになった. 微小地震S波のエンベロープ拡大の解析からは,火山フロントおよびその背弧側では火山フロントの前弧側に比べて速度ゆらぎのパワースペクトル密度が大きいことがわかってきた.東北地方における詳細な解析から,第四紀火山の下では特に大きく,それらの間では小さいこともわかってきた.

散乱係数については,今後も測定例が増えていくと思われる.特に火山地帯における測定は重要であるが,この場合,PS 変換散乱の考慮が必要であるう.しかし,多くの手法は等方散乱を仮定した理論に基づいていることに注意しておくことが必要である.速度ゆらぎのパワースペクトル密度に地域的な差異や深度による違いなどが見えてきているが,測定例も少なく,それぞれの推定精度もあまり高くはない.今後,特に波動論な視点から,速度ゆらぎのパワースペクトル密度の測定の高精度化が必要であるう.理論的には,非等方散乱を取り入れた輻射伝達理論の精緻化,背景速度が変化するようなランダム構造における波動およびエネルギー伝播,地表面の凹凸による散乱,実体波と表面波の変換散乱,ランダム構造の異方性などを取り入れた研究を進めていくことが重要であろう.

キーワード: コーダ, 不均質, リソスフェア, ランダム媒質, 散乱, エンベロープ

Keywords: coda waves, heterogeneity, lithosphere, random media, scattering, envelope

¹Geophysics, Science, Tohoku University

(May 22-27 2011 at Makuhari, Chiba, Japan)

©2011. Japan Geoscience Union. All Rights Reserved.

SSS027-19 会場:105

時間:5月22日17:15-17:30

海溝に沿って伝播する特異な地震波のメカニズム:波動伝播シミュレーションによる解釈

The mechanism of anomalous seismic wave propagating along trench revealed by FDM simulation

野口 科子 1* , 前田 拓人 1 , 古村 孝志 1 Shinako Noguchi 1* , Takuto Maeda 1 , Takashi Furumura 1

1 東京大学大学院情報学環/地震研究所

海溝軸近くで起こる震源の浅い地震(特にアウターライズ地震)の際に、震源から数百~千km 以上離れた限られた観 測点において、顕著な後続相が観測されることがある。この後続相は S 波の到来から数百秒以上遅れて現れ、走時から 期待される伝播速度は 1~1.5 km/s と遅く、粒子軌跡はレイリー波の特徴を示す。卓越周期は 10~20 s 程度であり、地殻内 を伝わる通常のレイリー波と同等の大きな変位振幅を示すこともある。この後続相については、おそらく Nakanishi et al. (1992) による、千島海溝付近の地震の際に北海道の上ノ国観測点でみられた例の報告が最初であろう。また、Yomogida et al. (2002) は波線追跡法により、この後続相が海溝沿いにトラップされたレイリー波である可能性を議論している。以 降、F-net 広帯域観測網の整備により、同様の観測例が多くあることが分かってきた。例えば、2005 年三陸沖アウターラ イズ地震 (Mw7) の際に、伊豆諸島の青ヶ島で観測されている (Noguchi et al., 2010; 2011)。また、2007年の千島沖の アウターライズ地震(Mw 8.1)の余震の際にも北海道の太平洋岸で観測されており、最近では 2010 年 12 月の小笠原諸 島付近のアウターライズ地震 (Mw 7.4) の際にも、関東付近で観測された。この後続相は、伝播経路が海溝に沿ってい る場合に現れ、限られた観測点でみられる他、陸域または陸側に近い地震では現れないという特徴がある。こうした位 置関係から、この特異な後続相は、Yomogida et al. (2002) が既に議論しているように、海溝に沿って長距離を伝播してく る途中で生成したものであることは疑いがない。また、後続相の現れる観測点は、十勝沖の海溝会合点、千葉沖の海溝 の三重会合点などに近い場所に限られており、このような海溝の走向が変わり、水深や堆積物の厚さが変化する場所が 何らかの役割を果たしているものとみられる。そこで、これら特異な後続相のメカニズムを調査するため、さまざまな 条件下での 2D・3D 差分法 (FDM) によるシミュレーションを行う。

まず、2005 年三陸沖アウターライズ地震における青ヶ島(F-net AOGF 観測点)の観測事例について、J-EGG500 による海底地形、J-SHIS による深部基盤構造および大大特によるプレート境界面に基づいて震央から観測点にかけての鉛直プロファイルを作成し、それを用いて 2D-FDM シミュレーションを行った。FDM 計算では、海水と海底の力学的な相互作用を考慮するため、岡本・竹中 (2005) に基づき、海底面の流体/固体境界面では境界を越えないようグリッドを選んで差分計算を行う手法をとった。シミュレーションの結果、浅い地震により海中で重複反射する海中音波と海底を伝播する表面波とがカップリングした波(境界波)が強く生成し、これが約 1 km/s で海底を伝播した後に、陸域の手前の海底斜面でレイリー波に変換して、特異な位相が陸域の観測点で観測されるというメカニズムが明らかになった。すなわち、水深の深い海溝での境界波の低速度での伝播、そして傾斜する大陸斜面での表面波への変換の二つが後続相の生成に重要な役割を果たしていることがわかった。

また、地下構造モデルを置き換えてケーススタディを行い、海水層、堆積層および海底地形が後続相に及ぼす影響を詳しく調べた。その結果、海水層の厚さは海底の境界波の伝播速度と卓越周期を支配し、堆積層の厚さは境界波の伝播速度に影響することがわかった。また、海底斜面の傾斜によって、境界波のレイリー波への変換と反射の比率が変わり、観測される後続相の振幅に影響することがわかった。以上の 2D シミュレーションは地震波が水深の深い海溝部分を通ってくる場合を想定しているが、さらに、海溝や会合点を含む 3 次元的な構造の影響を検討するため、3D-FDM によるシミュレーションを行った。その結果、海底の境界波が海溝軸沿いにトラップされて伝播する様子がみられた。これは、海溝沿いの厚い海水層により表面波あるいは境界波の低速度帯が形成されているためである。こうして、誘導された境界波は、海溝の折れ曲がり部分で海溝の外に漏れ出して海底斜面でレイリー波に変換し、陸域へ到達する。この結果から、三陸沖アウターライズの地震の場合は、海溝にトラップされた地震波が千葉県沖の三重会合点に到達してレイリー波に変換し、結果として青ヶ島およびごく近傍の限られた点のみで観測されたものと考えられる。これにより、特異な後続相が限られた地震と観測点の組み合わせにのみ見られる原因が説明できる。

防災科学技術研究所広帯域地震観測網(F-net)の連続地震観測記録を利用させていただきました。

キーワード: 海中音波, 海溝トラップ波, レイリー波, 差分シミュレーション, アウターライズ地震

¹CIDIR/ERI, The University of Tokyo

Keywords: ocean acoustic wave, trench trapped wave, Rayleigh wave, FDM simulation, outer-rise earthquake

(May 22-27 2011 at Makuhari, Chiba, Japan)

©2011. Japan Geoscience Union. All Rights Reserved.

SSS027-20 会場:105

時間:5月22日17:30-17:45

3次元の湖を考慮した近地長周期理論波形の差分計算:フィリピン・タール火山への適用

Finite-difference calculations of near-field long-period seismograms with 3D lakes at Taal volcano, Philippines

前田 裕太 ^{1*}, 熊谷 博之 ¹ Yuta Maeda^{1*}, Hiroyuki Kumagai¹

1 防災科学技術研究所

フィリピン・タール火山は首都マニラの南 60 km に位置し、通常 30 年以内の間隔で水蒸気爆発やマグマ水蒸気爆発等を繰り返してきた火山である。1977 年の最後の噴火から既に 30 年以上が経過していることから近い将来の噴火が危惧されている。この火山の監視体制の強化と噴火準備過程の理解向上のため、昨年 11 月に PHIVOLCS などと共同で広帯域地震計 5 台の新設を含む観測網の強化を行った。

タール火山における地震波形データの波形インバージョン解析にあたって問題となり得るのがグリーン関数に対する湖の影響である。タール火山には東西 $15~\rm km$ 南北 $25~\rm km$ 深さ $200~\rm m$ のカルデラ湖 (Taal Lake) と、その中に活火山の島がある。島内にはもう $1~\rm O$ 別の湖 (Main Crater Lake, 直径 $1.2~\rm km$ 深さ $80~\rm m$) がある。長周期 $(1-2~\rm P)$ の火山性地震のモーメントテンソル・インバージョンの結果に浅部の低速度層が重大な影響を与えることが Bean et al. (2008, JGR) によって示された。湖は低速度層の特別な場合と考えられるため、グリーン関数計算における湖の影響を見積もることはタール火山の解析において重要であると思われる。

そこで我々は、Maeda et al. (2011, GJI) で開発した差分法理論地震波形計算コードに改良を加えて湖や海などの水の領域を扱えるようにした。Maeda et al. (2011, GJI) のコードの特徴は (1) 任意の 3 次元の地形と構造を扱えること、(2)perfectly matched layer (PML) と呼ばれる効率の良い吸収境界の利用により長周期の波形を計算できること、であり、近地・長周期の火山性地震を解析する場合に重要な条件である。水の領域を扱うアルゴリズムとしては岡元・竹中 (2005, 地震) を参照した。

改良後のコードと 3 次元数値標高データ (2 つの湖の両方の湖底地形を含む) を用いて理論波形を計算した。計算は湖の領域を水で埋めた場合 (以下 waterlake と呼ぶ)、周囲と同じ物性の固体で埋めた場合 <math>(solidlake)、真空とした場合 (vacuumlake) の 3 つの場合について行い、結果を比較した。震源はいずれも等方な ricker 波で、時定数を (a)2 秒, (b)5 秒, (c)10 秒とした場合 (N ずれも深さ 500 m)、および時定数 5 秒で深さ (d)200 m, (e)2000 m とした場合の 5 種類の計算を行った。(a)-(e) それぞれの場合の震央距離 10 km 以内の観測点での waterlake b vacuumlake b の差は最大でそれぞれ b 3, b 3, b 3, b 6, b 7 であった。また waterlake b 8 solidlake b 8 をの差は最大でそれぞれ b 6 であった。また waterlake b 8 solidlake b 8 をの差は最大でそれぞれ b 9, b 7, b 8 であった。これらの結果から震源の時定数が短く浅い場所にある場合ほど湖が理論波形に強く影響することが分かる。また時定数を b 7 秒以上にすれば水そのものの影響は無視できるほど小さくなるが、湖底地形はたとえ b 10 秒のような長周期であっても無視できないことが分かる。

これらの結果がモーメントテンソル・インバージョンの結果に及ぼす影響については現在テスト計算を行っている段階である。本発表ではこれらの計算結果について紹介する。

キーワード: タール火山, グリーン関数, 差分法, 湖底地形

Keywords: Taal volcano, Green's function, FDM, lake-floor topography

¹NIED

(May 22-27 2011 at Makuhari, Chiba, Japan)

©2011. Japan Geoscience Union. All Rights Reserved.

SSS027-21 会場:105

時間:5月22日17:45-18:00

球座標系 2.5 次元差分法による理論地震波形と観測地震波記録との比較 Comparison of global synthetic seismograms calculated by the spherical 2.5-D finitedifference method with observed wave

豊国 源知 ^{1*}, 竹中 博士 ², 金尾 政紀 ¹ Genti Toyokuni^{1*}, Hiroshi Takenaka², Masaki Kanao¹

1 国立極地研究所, 2 九州大学大学院理学研究院

我々はこれまで差分法を用いた、計算精度と効率の良い全地球地震波伝播モデリング手法の開発を行ってきた。全地球を対象とした地震波の計算では、3次元の構造モデルと3次元の地震波伝播をフルに取り扱うには膨大な計算資源を必要とするため、構造が地球中心と震源を結ぶ軸の周りに回転対称であるという仮定の下に、球座標系での3次元の支配方程式を構造の2次元断面のみで解く、軸対称モデリングが伝統的に用いられてきた。この方法は計算時間やメモリを節約して、かつ3次元の地震波伝播を正しく考慮できるが、軸の周りに非対称な現実的な構造を取り扱えない欠点があった。我々は軸対称モデリングの効率の良さを保ちつつ、より現実的な地震波伝播モデリングが行えるよう、本手法に非対称構造(Toyokuni et al., 2005, GRL)、モーメントテンソル点震源(Toyokuni & Takenaka, 2006, EPS)、非弾性減衰(Toyokuni & Takenaka, 2008, AGU Fall Meeting)、および球座標系での支配方程式の特異点である地球中心を導入した(Toyokuni & Takenaka, 2009, AGU Fall Meeting)。一般的に2次元構造を対象に3次元の地震波伝播を計算するモデリング手法は2.5次元モデリングと呼ばれるため、我々は本手法に球座標系2.5次元差分法という呼称を用いている。

スキームの精度や有効性の検討はこれまで解析解や他手法による理論波形との比較でのみ行ってきたが、我々の手法は3次元の地震波動を取り扱えるため、観測地震波形とも直接比較ができる利点がある。今回は観測地震波記録三成分と球座標系2.5次元差分法による理論波形との比較を行い手法の有効性を示す。とくに最近は国際極年(IPY)2007-2008に伴うプロジェクトにより南極大陸内陸部に多くの広帯域地震観測点が設置されている。南極大陸での観測はこれまであまり解析されていなかった地球の自転軸方向のパスの情報をもたらすため、地球内部構造の解像度を上げる役割が期待されている。発表では2009年11月9日のフィジーの地震(Mw=7.3)を対象とし、標準地球モデルPREMや非対称地球モデルを用いた理論波形と観測波形との比較結果などを紹介する予定である。

キーワード: 地震学, 理論波形, 差分法, グローバルモデリング, 国際極年 2007-2008, 南極

Keywords: seismology, synthetic seismogram, finite-difference method (FDM), global modeling, IPY2007-2008, Antarctica

¹NIPR, ²Kyushu Univ.

(May 22-27 2011 at Makuhari, Chiba, Japan)

©2011. Japan Geoscience Union. All Rights Reserved.

SSS027-22 会場:105

時間:5月22日18:00-18:30

私達のシミュレーション研究:観測と理論をつなぐ「橋」を目指して Our numerical simulation studies: bridges connecting theory and practice in quake seismology

竹中 博士 ^{1*} Hiroshi Takenaka^{1*}

1 九州大学

本セッションのコンビーナーから私と私のシミュレーション関係の共同研究者達(以降「私達」と呼ぶ)が、「波動伝播の数値シミュレーションに関する最近の動向」の中のどの部分をどのような考えで,これまで研究を進め,今後さらに研究を進めようとしているのかについて,紹介するよう依頼があった。身に余る光栄な依頼である。本発表ではこの趣旨に沿ってお話したい。

Jon F. Claerbout の教科書"Earth Sounding Analysis: Processing versus Inversion" Blackwell Scientific Pub.(1992) の緒言

"I hope to illuminate the gaps between theory and practice which are the heart and soul of exploration seismology, as they are of any living science."

とある。なんと素晴らしいひと言であろう。私達は、地震学(地球以外の惑星や衛星も含めた quake seismology)においてこの理論(theory)と観測(practice)のギャップを埋めたいという大きな願望を持っている。しかし、ギャップを埋めるには、私達(特に私は)はあまりに非力である。そこで、私達が目指してきた、そして今後も目指すのは、理論(theory)と観測(practice)をつなぐ「橋」を創って架けることであり、その(様々な)橋を構成するのがシミュレーションというツールである。したがって、私達は自分たちが進めてきたシミュレーション研究を理論(theory)研究の一部だとは思っていないし、独立した計算地震学の一部として捉えることもなく、最先端の計算機を用いたグランドチェレンジ的なシミュレーションを目指してもいない。「橋」は大小さまざま多種多様である。それで良い。講演では私達が作ってきた「橋」やそのパーツの具体例(できるだけ比較的新しいもの)をご紹介しながら私達がどのような考えでこれまで研究を進め、今後さらに研究を進めようとしているのか述べていきたい。ただ、今回の私の話は共同研究者の方々のコンセンサスを得たものではなく、私の個人的な思い込みを語る予定である。

キーワード: シミュレーション, 地震波動 Keywords: numerical simulation, seismic wave

¹Kyushu University

(May 22-27 2011 at Makuhari, Chiba, Japan)

©2011. Japan Geoscience Union. All Rights Reserved.

SSS027-P01

会場:コンベンションホール

時間:5月23日16:15-18:45

Shortest path method における異方性媒体での群速度の近似計算方法 Approximate calculation of group velocity of anisotropic media in the shortest path method

関口 渉次 ^{1*} Shoji Sekiguchi^{1*}

1 防災科研

¹NIED

Shortest path method は対象領域に node を分布させ、それらを互いに結びつける経路を設定し、震源から観測点までの 波の伝播時間を、その間の最短時間経路を探索することにより計算する手法である。この手法を異方性媒質に適用する には、node 間の群速度が計算できればよい。等方性媒質であれば位相速度と群速度は同じなので、別途群速度を計算する必要はない。異方性媒質では大きさ方向ともに異なる。異方性が弱い場合はこの違いによる波線経路の違いは小さいとして無視する場合が多いが、ここでは、波線経路の違いも考慮できるようにする。具体的には以下のように計算するようにした。

まず、媒質パラメータを保持する node 毎に、node を覆う6つの平面を想定し、各面には方向 vector の2成分を座標にした格子点を配置する。各 node でいろいろな方向に対して Christoffel equation を解いて群速度 vector を計算する。群速度 vector をもとに方向 vector を出し、各平面上に群速度を与える。これらを spline 関数で平滑化し、spline 関数の内挿により各格子点での群速度を計算し値を保存する。保存した値から任意の方向での群速度を格子間の線型補間によって得る。なお、異方性が非常に強いと平滑化に失敗するので、その場合は使用できない。

今回開発した手法を用い、PREM モデルの LVZ の異方性地震波速度を使って、波線計算を実施した。到着時刻は垂直方法と水平方向とで予想通り違った値となった。経路の違いも確認できが、その違いは非常に小さかった。今回使用した速度構造の異方性が数%と小さいためだと思われる。

キーワード: 最短経路法, 異方性, 群速度

Keywords: shortest path method, anisotropy, group velocity

(May 22-27 2011 at Makuhari, Chiba, Japan)

©2011. Japan Geoscience Union. All Rights Reserved.

SSS027-P02

会場:コンベンションホール

時間:5月23日16:15-18:45

P-S, S-P 変換波の混入による見かけ上の S 波速度異方性 Seismic anisotropy apparently caused by contamination of P-S or S-P converted wave

東野 陽子 ^{1*}, 深尾 良夫 ¹, 坪井 誠司 ¹ Yoko Tono^{1*}, Yoshio Fukao¹, Seiji Tsuboi¹

1 海洋研究開発機構

S 波速度異方性は、地震波の振動方向によって地震波の速度が異なる偏向異方性により二つの直交する波が分離して伝播する現象である。その検出には水平 2 成分を回転させて S 波が相似波形に分離する方位を求め、二つの相似波形が一致する時刻差を求める波形相関法が広く用いられている。

検出と解析法が単純なだけに、我々はこの S 波速度異方性についての解析する場合、他の波からの影響を注意深く考えなければならない。P 波からの変換 SV 波の到来や、P 波の radial 成分も地震計の水平 2 成分には観測されることも考えると、解析対象となる S 波とほぼ同じ到来時刻をもつ P 波的な変換波、CMB やマントル不連続面などで生じる変換波の存在も見逃してはならない。本研究では、理論走時では直達 S、ScS、ScS2 波に重なる sP(SP)、ScP、ScSScP 波があることを踏まえ、理論波形を用いてそれらの波が実際に異方性解析に影響のある振幅で観測されるのか、また観測されたとしても S との分離は可能なのかを調べた。

理論波形計算には、Direct Solution Method [Takeuchi et al., 1996] を用いた。速度構造モデルは PREM で、サンプリング周期 5 秒までの計算を行ったので、10 秒までの信頼性を持つ。Vertical dip slip の点震源を用いて radiation pattern の単純な震源を深さ 25、100、300、400、450、500、550、600km に設定し、azimuth 45, 60, 80 度方向に 1 度ずつ震央距離50 度まで 150 点の観測点に対して計算した。

 $100 \mathrm{km}$ の深さに対する計算結果に見られた特徴を例として詳しく述べると、約5度までの震央距離では、 s 波の到達に sP とレイリー波が近く到来する。特にレイリー波による波形のゆがみが大きい。約20度以上に到達する S 波には SP が混入する。その他の深さについても、少なくとも $\mathrm{10}$ 秒以上の長周期では sP 、 SP や表面波の混入により radial 成分の S 波のゆがみがない震央距離は非常に限られる。直達 S 波を用いて異方性解析を行う場合、近距離で観測される S 波は表面波の影響がない短周期帯を用いる必要があり、約5?10度以上で観測される s 、 S 波については理論波形か上下動成分を用いて sP 、 SP 波の到達が非常に弱いか分離できる時刻であることを確認すべきである。

ScS, ScS2 については、深さ $450^{\circ}600$ km において、ScP, ScSScP が混入する。しかし、震央距離 20 度以下においては ScP, ScSScP の振幅が非常に小さく radial 成分の ScS、ScS2 波形をゆがませるほどではない。実際に、波形相関法を用いて見かけ上の異方性が求まってしまうかを確かめたところ約 20 度以下では影響は殆どなかった。しかし、この震央距離も SV と SH の振幅差によって変化するため、ScS, ScS2 を用いた異方性解析についても実際の震源と同じ radiation pattern を用いて理論波形を計算し、変換波の影響を詳しく見積もる必要がある。

以上の結果から、異方性解析を行う際には大量のデータを用いることが多いが波形のチェックのないシステマティック な解析は非常に危険であることがわかる。特に長周期での解析では不連続面から生じた変換波の混入により位相ずれを 生じているのか、本当に異方性によるスプリッティングなのかどうかの見分けは非常に難いため、解析する震源と周波 数帯に合わせた理論波形による確認が必要である。

キーワード: S 波速度異方性

Keywords: anisotropy, Shear wave splitting

 $^{^{1}}$ JAMSTEC

(May 22-27 2011 at Makuhari, Chiba, Japan)

©2011. Japan Geoscience Union. All Rights Reserved.

SSS027-P03

会場:コンベンションホール

時間:5月23日16:15-18:45

放射境界条件の地震音波の励起と伝播

Excitation and propagations of seismo-acoustic waves with an open boundary condition

小林 直樹 ^{1*} Naoki Kobayashi^{1*}

1 宇宙航空研究開発機構宇宙科学研究所

我々は非弾性や放射境界条件を持った散逸系の重力弾性球の固有振動の効率の良いモード計算法を開発した (Kobayashi 2007 GJI).この方法によって固体モードを大気を含めて計算することも大気モードを固体地球を含めて計算することも容易となった.その手法のパフォーマンスを示すために我々は百万個の大気モード計算を行い,2008 年の宮城内陸地震の際に発生した長周期音波波形を固体地球から熱圏まで含めて計算することに成功した (Nagao et al. 2008 AGU).また,最近では帯状風の長周期音波の伝播への影響も考察している (Kobayashi 2009 AGU, 2010 JpGU).

そうした系ではエネルギーが散逸するため,固有振動モードの固有周波数は複素数となる.また,完全弾性球の場合の直交性も厳密には成立しない.固体地球を考える場合にはモードのQ値は概ね120以上であるので,その近似の範囲内では完全弾性球近似でモードの励起を扱うことができる.一方,音波モードでは大気上端からの弾性波の放射によってQ値が10以下になることも希ではない.2010年地震学会秋季大会ではそうした場合を想定したモードの励起問題を1次元音波問題に関して議論した.本講演では固体地球と現実的な大気モデルを取り入れ放射境界条件の場合の音波モードの励起を計算し,地震や火山爆発によって励起される大気音波の伝播への影響を報告する.

キーワード: 地震音波, 励起, 波動伝播, カップリング, 放射境界条件, 帯状風

Keywords: seismoacoustic waves, excitation, wave propagation, coupling, open boundary, zonal winds

¹ISAS/JAXA

(May 22-27 2011 at Makuhari, Chiba, Japan)

©2011. Japan Geoscience Union. All Rights Reserved.

SSS027-P04

会場:コンベンションホール

時間:5月23日16:15-18:45

神岡 100 メートルレーザー伸縮計で記録された常時地球自由振動 The Earth's background free oscillation recorded by the laser strain meter beeing in operation at the Kamioka Mine

森井 亙 ^{1*}, 新谷 昌人 ², 高森 昭光 ², 加納 靖之 ¹, 早河 秀章 ³, 竹本 修三 ⁴ Wataru Morii^{1*}, Akito Araya², Akiteru Takamori², Yasuyuki Kano¹, Hideaki Hayakawa³, Shuzo Takemoto⁴

 1 京都大学防災研究所, 2 東京大学地震研究所, 3 国立極地研究所, 4 国際高等研究所 1 DPRI,Kyoto Univ., 2 ERI, Univ. Tokyo, 3 NIPR, 4 IIAS

岐阜県飛騨市の神岡鉱山内に設置した基線長 100 メートル直交 2 成分のレーザー歪計を使用した観測を 2003 年以来現在まで継続中である。この観測によって得られた歪記録と気圧計記録を解析して、常時地球自由振動の特性を調べた。常時地球自由振動の信号強度と大気圧変動の関係について報告する。

キーワード: レーザー伸縮計, 常時地球自由振動, 気圧変動

Keywords: laser strain meter, Earth's background free oscillation, atmospheric pressure change

(May 22-27 2011 at Makuhari, Chiba, Japan)

©2011. Japan Geoscience Union. All Rights Reserved.

SSS027-P05

会場:コンベンションホール

時間:5月23日16:15-18:45

自由振動コアモードの周波数の緯度・経度依存性

Latitude and longitude dependencies of the eigen frequency in core moeds of the earth's free oscillation

清水 宏信 ^{1*}, 平松 良浩 ², 川崎 一朗 ³ Hironobu Shimizu^{1*}, Yoshihiro Hiramatsu², Ichiro Kawasaki³

- 1 金沢大学自然科学研究科、2 金沢大学自然システム学系、3 立命館大学歴史都市研究センター
- ¹Natural Sci and Tec., Kanazawa Univ., ²Natural System Kanazawa Univ., ³Reserach Center for DMUCH

自由振動は地球の内部構造を反映しており、核の構造に敏感なモードをコアモードと呼ぶ。内核は軸対称な異方性を持つことが知られており (Morelli et al., 1986; Woodhouse et al., 1986)、そのような異方性が存在した時、緯度によってコアモードの固有振動数が異なることが最近になって報告された (Kawasaki, 2009)。本研究では、コアモードの固有振動数の緯度依存性を検出することに加え、経度依存性についても検出し議論することを目的とした。コアモードの固有振動数の緯度・経度依存性を検出することは、内核の地震波速度異方性に対して新たな拘束条件を与えることが期待される。本研究では、2004 年 12 月 26 日に発生したスマトラ・アンダマン地震によって励起された 300 秒よりも周期が長い自由振動を研究対象とした。データは超伝導重力計 (GGP, Global Geodynamics Project より)、STS-1 地震計 (IRIS, Incorporated Research Institutions for Seismology より)の本震が発生してから 6 時間後以降に記録された 11 日間、37 日間の連続データを使用した。これらのデータを離散フーリエ変換 (DFT) することでパワースペクトルを計算し、励起されたコアモードを特定したのちピーク周波数を求めた。また求めたピーク周波数が振動の減衰による影響を受ける可能性もあるため、励起されたコアモードに対して、減衰係数とともに固有振動数を決定する存否法による解析も合わせて行った。存否法やフーリエ変換による解析を行う前に、超伝導重力計のデータについては、理論潮汐解析プログラム BAYTAP-G(Ishiguro et al., 1981; Tamura et al., 1991) より推定した理論潮汐の値を観測データから除去し、STS-1 地震計については、地震計の特性を補正した。また、両方のデータに関して 0.5mHz~10mHz のバンドパスフィルターをかけ、線形トレンドを除去し、ハニングテーパーを施した。

求めたパワースペクトルから励起されたコアモードとして $_0S_0$ 、 $_1S_0$ 、 $_3S_2$ を特定した。フーリエ変換による解析から $_1S_0$ のピーク周波数は小さな緯度・経度依存性、 $_3S_2$ のピーク周波数は緯度・経度依存性を持つことを示したが、 $_0S_0$ のピーク周波数は緯度・経度依存性を示さなかった。また存否法とフーリエ変換より求めたコアモードの固有振動数を比較した結果、両者に大きな違いはなく、モードの減衰が固有振動数の推定に及ぼす影響は小さいと考えられる。

 $_0S_0$ に関しては、今回の解析からピーク周波数の緯度・経度依存性を見ることができなかった。これは、このモードがあまり異方性に対して敏感ではないためと考えられる。 $_3S_2$ のピーク周波数が緯度・経度依存性を示した原因としては、内核境界付近の領域にあると考えられる。またピーク周波数が非常に小さな変化を示した $_1S_0$ は、主に外核に敏感である。しかし、外核のような流体中で 10^{-5} よりも大きな密度の水平方向変動があると説明することは難しいため (Stevenson, 1987)、外核に異方性があるとは考えにくい。従って、緯度・経度依存性を示した原因は、核マントル境界もしくは内核の領域であると考えられる。

謝辞:本研究では GGP より超伝導重力計のデータや理論潮汐解析プログラム BAYTAP-G を、IRIS より STS-1 地震計のデータを提供して頂きました。記して感謝致します。

キーワード: 自由振動, スペクトル解析, 内核, 異方性

Keywords: the earth's free oscillation, spectral analysis, the inner core, anisotropy

(May 22-27 2011 at Makuhari, Chiba, Japan)

©2011. Japan Geoscience Union. All Rights Reserved.

SSS027-P06

会場:コンベンションホール

時間:5月23日16:15-18:45

Waveform effects of the thinning or tearing of the subducting Pacific plate beneath Japan Waveform effects of the thinning or tearing of the subducting Pacific plate beneath Japan

simanchal padhy^{1*}, Takashi Furumura¹, Takuto Maeda¹ simanchal padhy^{1*}, Takashi Furumura¹, Takuto Maeda¹

¹CIDIR, ²ERI, University of Tokyo, ³NGRI, Hyderabad ¹CIDIR, ²ERI, University of Tokyo, ³NGRI, Hyderabad

We studied the detailed distorted structure of the subducting Pacific plate near Honshu in the Kanto district by the use of waveforms from deep earthquakes recorded at fore-arc Hi-net and F-net stations in Japan. Such waveforms confirm most of the earlier observations like dominance of low-frequency onset and following high-frequency energy due to the stochastic waveguide effect of the subducting plate, proposed earlier by Furumura and Kennett (2005). However, new observations for most of the source-receiver paths show the distortion of body waves, when signals traverse the Pacific slab at depths more than 350 km. They include the loss of high frequency energy in P-coda, loss of low-frequency precursor and presence of converted phases in P-coda. Such complexities in the observed waveforms are difficult to explain by existing slab model, indicating sudden lateral change in the wave guiding properties of the subducting slab such as caused by the thinning or tearing of the slab in deeper part.

To explain the observations, we employ two-dimensional finite-difference method (FDM) simulations of complete high-frequency P-SV wave propagation taking thinning of Pacific slab into account. We expect that the observed guided wave energy must decouple from waveguide where the slab is deformed or thin. Low frequency energy leaks out of the slab and travels to the receivers along paths in the low velocity mantle surrounding the slab. Taking into account the tomographic evidence of weak velocity anomaly of the Pacific slab beneath Honshu and the observations of slab tear in the Pacific plate (Obayashi et al., 2009; Kennet and Furumura, 2010), we expect a local velocity anomaly or thinning in the oceanic lithosphere along the Izu-Bonin arc that would be compatible with the observations. The preliminary results, which suggest that the Pacific slab is strongly deformed beneath Honsu, is the cause of the complicated waves from deep events with strong source location dependencies. These effects need to be tested further with a 3-D FDM simulation employing high-performance computers with a variety of possible slab geometries.

 \pm - \neg - \vdash : slab tears, subducting plate, waveguide, wave propagation Keywords: slab tears, subducting plate, waveguide, wave propagation

(May 22-27 2011 at Makuhari, Chiba, Japan)

©2011. Japan Geoscience Union. All Rights Reserved.

SSS027-P07

会場:コンベンションホール

時間:5月23日16:15-18:45

波形記録から見た 2008 年岩手・宮城内陸地震に先行する地震活動の特徴 Waveforms of seismic events followed by the 2008 Iwate-Miyagi Inland Earthquake

土井 一生 ^{1*}, 川方 裕則 ¹ Issei Doi^{1*}, Hironori Kawakata¹

1 立命館大学理工学部

2008 年岩手・宮城内陸地震 (Mj 7.2) は本震発生 (6 月 14 日 8 時 43 分) の約 40 分前から前震活動が見られたことが報告されている (2008 年地震予知連絡会)。 気象庁一元化カタログにも 8 時 1 分と 8 時 11 分にそれぞれマグニチュード 0.6 と 1.3 の前震が本震震央から 1 km 以内の領域で発生したこと記載されている。本研究では、本震の震央に最も近い Hi-net 観測点一関西 (震央距離約 3 km) の連続波形記録を用いて、さらに前震活動について精査した。

解析には6月14日7時45分から1時間の一関西における上下動記録を用いた。目視で波形を読み取りおおむねノイズレベルの5倍を超え、初動が明瞭に読み取れるものを切り出した結果、13個のイベントを抽出することができた。それぞれのイベントにおいて、P波走時から1.5秒間におけるS波(P波到達の約0.8秒後)や地上反射波などのフェイズはP波到達時刻を基準としておおむね同時刻に到来しており、前震の発生位置がほぼ同じであったことが推定される。また、各波形をP波初動振幅で正規化した後続フェイズの振幅値の大小からおおむね2グループに分類することができた。後続フェイズの走時がほぼ同じであることから、波線は地震によらず同一であると考えられるため、震源メカニズムの違いが振幅値に反映されたものと示唆される。こうした波形の特徴から、前震はほぼ同じ場所に存在する複数の断層面で発生したことがわかった。今後、地震ごとの波形記録の違いを不均質構造や震源の違いによって説明を行う。

キーワード: 2008 年岩手・宮城内陸地震, 前震, 震源メカニズム, 後続フェイズ Keywords: 2008 Iwate-Miyagi Inland Earthquake, foreshock, focal mechanism, later phases

¹Ritsumeikan Univ.

(May 22-27 2011 at Makuhari, Chiba, Japan)

©2011. Japan Geoscience Union. All Rights Reserved.

SSS027-P08

会場:コンベンションホール

時間:5月23日16:15-18:45

反射波を用いた豊後水道下における不均質構造の検出の試み An attempt to detect the inhomogeneous structure beneath the Bungo channel using reflected waves

宮崎 真大 ^{1*}, 松本 聡 ², 清水 洋 ², 植平 賢司 ² Masahiro Miyazaki^{1*}, Satoshi Matsumoto², Hiroshi Shimizu², Kenji Uehira²

1九大・理,2九大・地震火山センター

豊後水道で発生した地震の観測波形には、不均質構造に起因すると考えられる顕著な後続波が観測される。これまでの研究では、スラブ内で発生した地震の後続波の解析から、豊後水道下に沈み込むフィリピン海プレートの形状や地殻構造を推定することが行われている (Oda et al., 1990; Ohkura, 2000; 三好・石橋,2007 など)。そこで、本研究では、スラブ内地震ではなく、深さ 10km 程度の地殻浅部で発生した地震クラスターを用い、豊後水道における不均質構造の検出を試みた。

本研究では、問題を簡略化するために、反射面が水平であるという仮定を用いて解析を行った。走時解析から、観測された後続波を反射面の深さに変換し、震源と観測点の分布から、反射面の分布を推定した。ただし、震源分布の誤差をできるだけ少なくするために、相対震源決定 (Ito, 1985) を行い、再決定した震源を用いた。解析には、震央距離 $80 \, \mathrm{km}$ 以内で、直達 S 波が明瞭である定常観測点 17 点と、臨時に設置した観測点 18 点の計 18 点のデータを使用した。

解析の結果、ほとんどの観測点において、深さ 15km から 20km に渡る領域からの反射波が見られた。また、いくつかの観測点では、30km より深い反射面からの反射波も見ることができた。

豊後水道では、フィリピン海プレートの沈み込みに伴い、長期的スロースリップ (Hirose et al., 1999; Ozawa et al., 2004) や深部低周波微動 (Obara, 2002) といった、いわゆるスロー地震が発生している。仮定する状況の違いから一概に比較することはできないものの、本研究で確認できた反射面が、これらスロー地震と関連する可能性がある。不均質構造とスロー地震の関連性が明らかになれば、スロー地震の発生機構の解明に役立つと考えられるため、今後、より詳細な検討が必要である。

謝辞

本研究では、九州大学の定常観測点・臨時観測点のデータに加え、気象庁・防災科学技術研究所・京都大学の定常観測点のデータを使用しました。記して感謝いたします。

キーワード: 反射波, 豊後水道

Keywords: reflect waves, the Bungo channel

¹Grad. Sch. Sci., Kyushu Univ., ²SEVO, Kyushu Univ.

(May 22-27 2011 at Makuhari, Chiba, Japan)

©2011. Japan Geoscience Union. All Rights Reserved.

SSS027-P09

会場:コンベンションホール

時間:5月23日16:15-18:45

雑微動の相関解析による西南日本における地殻内・地殻下からの反射信号の検出 Detecting Subsurface Reflections in Southwestern Japan, Using Ambient Seismic Noise

大見 士朗 1* , 平原 和朗 2 Shiro Ohmi 1* , Kazuro Hirahara 2

1 京都大学防災研究所, 2 京都大学大学院理学研究科

§はじめに:既往研究によれば、近畿地方を中心とする西南日本地域には、モホ面を始めとして、いくつかの地殻内・地殻下反射面の存在が報告されている。ここでは、地動信号の雑微動部分の相関解析により、これらの反射面からの信号の検出を試みた結果を報告する。

§ データと解析手法:解析には、Hi-net、気象庁、大学等の短周期微小地震観測点の上下動成分連続記録データを用いた。データは1時間ごとのセグメントに分割し、Bensen et al. (2007) の'Running Absolute Mean Normalization' 法による前処理と、0.5Hz~1Hz のバンドパスフィルタをかけたのち、観測点間の相互相関関数 (CCF) を求めた。その後、各観測点ペアにつき、最低 15 カ月程度の相互相関関数をスタックして結果とした。

§ 結果と議論:主として Hi-net のボアホール観測点と他の観測点間の CCF には、Rayleigh 波の基本モード以外の信号 (以下、X フェイズという) が認められることがある。近畿地方には 1000m を超える深さのボアホール観測点が 3 点あるが、これらの点と他の観測点の間の CCF には、Rayleigh 波の振幅が深さとともに減衰することによると思われる、基本モード以外の、特に明瞭な信号が認められた。ここでは、近畿地方で行われた物理探査実験の結果(廣瀬・伊藤、2007)等に基づく一次元構造を仮定し、モホ面およびいくつかの地殻内反射面からの反射波、さらには Rayleigh 波の理論走時と振幅の深さ分布を求めた。その結果、X フェイズの走時は、概してモホ面や地殻内反射面からの信号として解釈可能であることがわかった。2000m 超の深度のボアホール観測点(Hi-net の Hi-net Hi-net の Hi-net Hi

§謝辞:表面波の分散曲線等の計算については、川崎一朗博士の御指導をうけた。また、解析には、Hi-net、気象庁などの微小地震観測波形データを使用した。記して感謝申し上げる。

キーワード: 雑微動, 相関解析, 地震波干渉法, 反射面, モホ面

Keywords: Ambient Seismic Noise, Seismic Interferometry, Subcrustal Reflector, Moho discontinuity

¹DPRI, Kyoto Univ., ²Graduate School of Science, Kyoto Univ.

(May 22-27 2011 at Makuhari, Chiba, Japan)

©2011. Japan Geoscience Union. All Rights Reserved.

SSS027-P10

会場:コンベンションホール

時間:5月23日16:15-18:45

ACROSS を用いた野島断層構造のモニタリング Monitoring of the Nojima Fault structure using ACROSS

小林 由実 2 , 渡辺 俊樹 1* , 山岡 耕春 1 , 生田 領野 3 , 西上 欽也 4 Yoshimi KOBAYASHI 2 , Toshiki Watanabe 1* , Koshun Yamaoka 1 , Ryoya Ikuta 3 , Kin'ya Nishigami 4

1 名古屋大学大学院環境学研究科, 2 中央復建コンサルタンツ(株), 3 静岡大学理学部, 4 京都大学防災研究所

1995 年兵庫県南部地震 (Mw 6.9) の震源断層である野島断層の南西端では、断層解剖計画によってボアホール孔が掘削された。断層構造や断層回復過程を調べることを目的の1つとし、ボアホール孔内には地震計等の計測機器が設置され、連続観測が行われている。また、地表には精密制御定常震源装置 (ACROSS) が設置され、断層構造の時間変化を計測するために 2000 年から繰り返し実験が行われている。

本研究では、ACROSS を用いて、主に伝達関数の走時や振幅の変化、さらに断層破砕帯周辺の異方性の変化について調べた。P 波および S 波の走時変化は、2000 年以降 2ms 早まる結果が得られた。この変動は断層周辺のクラックの固着回復過程と一致すると考えられるが、有意な変化かどうかさらに調べる必要性がある。一方、振幅は多少ばらつくものの一定の経年変化は見られなかった。異方性に関しては、S 波スプリッティングを用いて推定した。その結果、2000 年以降異方性に変化がないことが分かった。速い S 波の振動方向 (LSPD) は、浅い領域のクラックが分岐断層の走向に平行な方向に選択配向していることを示した。これは、この地域の水平圧縮応力方向 (E-W) とは異なる方向である。また、深い領域の異方性は、浅い領域に比べて小さく、深い領域ではクラックが閉じているおよび/または選択配向していないことが示唆された。

キーワード: ACROSS、モニタリング、野島断層、S 波スプリッティング

Keywords: ACROSS, monitoring, Nojima fault, S-wave splitting

¹Nagoya University, ²Chuo Fukken Consultant Co.,Ltd., ³Faculty of Science, Shizuoka University, ⁴DPRI, Kyoto University

(May 22-27 2011 at Makuhari, Chiba, Japan)

©2011. Japan Geoscience Union. All Rights Reserved.

SSS027-P11

会場:コンベンションホール

時間:5月23日16:15-18:45

伊豆半島東部における雑微動の自己相関関数の時間変化と地殻変動 Temporal changes of auto-correlation functions accompanied by crustal deformation for the eastern off-Izu seismic swarms

上野 友岳 ^{1*}, 齊藤 竜彦 ¹, 汐見 勝彦 ¹, Enescu Bogdan ¹, 廣瀬 仁 ¹ Tomotake Ueno ^{1*}, Tatsuhiko Saito ¹, Katsuhiko Shiomi ¹, Bogdan Enescu ¹, Hitoshi Hirose ¹

1 防災科研

¹NIED

伊豆半島東方沖では群発地震活動が繰り返し発生しており、地震活動に前後して地殻変動が生じることが知られている。近年においても 2006 年,2009 年の群発地震活動に前後して,防災科研 Hi-net 等の観測点で傾斜変化が観測された。このような一連の地殻変動記録から,当該地域では,浅部にマグマが貫入するダイクモデルが提案されており [例えば Okada et al, 2000],群発地震活動は,このマグマが地震発生層に到達した際に発生すると考えられている。マグマの貫入は地殻の状態を著しく変化させると考えられるため,雑微動の自己相関関数にも顕著な変化が生じることが期待される。そこで我々は,伊豆半島東方沖の群発地震活動域に近接する Hi-net 観測点における雑微動の自己相関関数と地震活動,傾斜変動,および GPS 測量の時間変化の関連性を調査した。

使用するデータは,防災科学技術研究所関東東海地殻活動観測網 / Hi-net 観測点における連続地震波形データおよび傾斜データ,国土地理院による GPS 変位データおよび気象庁一元化震源カタログである。連続地震波形データに 1-3Hz のバンドパスフィルター処理を施すとともに,すべての期間にわたってデータの重みを等しくするために振幅値を 1bit に 規格化した記録を用いて,雑微動の自己相関関数を作成した。より安定した自己相関関数を得るために,1 週間分のデータについてスタックを行った。このようにして得られた自己相関関数に対し,時間遅れ 4-15 秒に見られる波群の変化が観測点周辺の速度構造の微小な変化によるものと仮定して,その速度の変化量を求めた [例えば Wegler et al., 2009]。また,より正確にマグマ貫入による傾斜変動を自己相関関数の時間変化と比較するため,BAYTAP-G [Tamura et al., 1991]を使って傾斜記録から潮汐成分を除去した。

2009 年 12 月に発生した群発地震活動域に最も近い伊東観測点の自己相関関数を求めたところ,ノイズレベルを超える 0.5 %程度の大きな速度低下が発生した。そして,この速度低下は地震活動の収束後,徐々に解消される傾向がある。このような速度変化は,群発地震活動域の南側に位置する吉田観測点においても角にすることができた。一方,群発域の西側に位置する岡観測点,伊東中観測点では,群発地震時の速度低下を確認することができなかった。伊東および吉田観測点の自己相関関数は 2006 年の群発地震活動の際にも同様な変化をした。このことから,伊豆半島東方沖の群発地震活動による自己相関関数の時間変化は速度低下を示し,その後徐々に解消されることが繰り返されていると分かった。群発地震活動の初期段階において,伊東観測点の自己相関関数の時間変化は,傾斜記録や GPS 変位記録の変動とおおよそ一致している。しかし,傾斜記録や地震活動,平均的なノイズレベルは数ヶ月程度で群発地震活動前の元の状態に戻るのに対し,自己相関関数から求められた速度低下の解消には数年の期間を必要とする。このような変化は,マグマの貫入によって著しく変化した地殻状態,例えばマグマがゆっくりと冷え固まる過程などの状態を示しているのかもしれない。

キーワード: 自己相関関数, 時間変化, 伊豆半島, 群発地震, 地殻変動

Keywords: Auto-correlation function, temporal change, Izu Peninsula, seismic swarms, crustal deformation

(May 22-27 2011 at Makuhari, Chiba, Japan)

©2011. Japan Geoscience Union. All Rights Reserved.

SSS027-P12

会場:コンベンションホール

時間:5月23日16:15-18:45

海底地震計記録を用いた地震波干渉法による 2005 年宮城県沖の地震 (Mj7.2) に伴う地震波速度変化の検出

Detection of seismic velocity changes associated with the 2005 M7.2 Miyagi-Oki Earthquake, NE Japan revealed from seismi

中条 恒太 1* , 伊藤 喜宏 1 , 中原 恒 1 , 日野 亮太 1 , 山田 知朗 2 , 篠原 雅尚 2 , 金沢 敏彦 2 Kota Chujo 1* , Yoshihiro Ito 1 , Hisashi Nakahara 1 , Ryota Hino 1 , Tomoaki Yamada 2 , Masanao Shinohara 2 , Toshihiko Kanazawa 2

近年,地震波干渉法を用いた地下探査が注目されている.この手法では,波動場を 1 点あるいは 2 点で観測し,自己 あるいは相互相関処理を行い足し合わせることにより,観測点付近の構造に対するグリーン関数を推定する(例えば,Campillo and Paul, 2003).さらに常時微動の相互相関と自己相関が周辺での大・中地震の発生に伴い変化していること も指摘されている(例えば,Wegler et al., 2009).本研究では,宮城県沖に設置した海底地震計で得られた連続波形記録 に対して自己相関関数を計算し,2005 年 8 月 16 日の宮城県沖で発生した地震(Mj7.2)の前後で自己相関関数に変化が見られるかを調べることにより,地下構造の時間変化を捉えることを試みる.これまでに海底地震計を用いた地震波干渉法による地下構造の推定については報告例(たとえば Harmon et al., 2007)があるが,構造の時間変化についての報告例は知らない.

データとしては宮城県沖に設置した 5 点の自己浮上式の長期型海底地震計で得られた 3 成分の連続波形記録を用いた.各観測点の連続波形記録に対してバンドパスフィルタ処理(0.5-2Hz)を施した後,振幅の 1bit 化を行い 120 秒間の自己相関関数を求めた.さらに得られた自己相関関数に対して 1 日間の重合処理を行い,1 日の平均自己相関記録とした.解析期間は本震を挟む 2005 年 6 月から 2006 年 2 月までの約 270 日とした.得られた平均自己相関記録には振幅が大きい位相がいくつか見られた.これらの位相は解析期間を通して安定して見られることから,観測点直下の地下構造に起因するものである可能性が高い.

2005年の宮城県沖の地震の前後に注目すると,いくつかの点の上下動成分でラグタイム 10-15 秒付近の位相について最大 0.1 秒の遅れが見られた.位相の変化は上下動成分で顕著であるが,水平動成分ではほとんど変化が見られない.またラグタイム 15 秒付近の位相遅れは地震後徐々に地震前の状態に回復していくことが分かった.観測点周辺で空間一様な地震波速度変化が発生したと仮定してその変化率を計算すると,上下動成分で観測されたラグタイム 10 秒の位相の 0.1 秒程度の遅れは,およそ 1 %の速度変化となる.この大きさは,中原・他(2007)が 2005 年福岡県西南沖地震(Mj7.0) の前後に陸上観測点で検出した 1.5% 程度の低下と同程度である.

キーワード: 地震波干渉法, 海底地震計, 自己相関関数, 2005 年宮城県沖地震 Keywords: seismic interferometry, OBS, ACF, the 2005 M7.2 Miyagi-Oki Earthquake

¹ 東北大学理学研究科, 2 東京大学地震研究所

¹Tohoku University, ²The University of Tokyo

(May 22-27 2011 at Makuhari, Chiba, Japan)

©2011. Japan Geoscience Union. All Rights Reserved.

SSS027-P13

会場:コンベンションホール

時間:5月23日16:15-18:45

「地震波干渉法による 2009-2010 年豊後水道スロースリップイベントに伴う地震波速度構造変化検出の試み」

Search for seismic velocity changes due to the 2009-2010 Bungo-Channel slow slip event with seismic interferometry

矢田 大樹 1* , 大見 士朗 2 , 平原 和朗 1 Daiki Yada 1* , Shiro Ohmi 2 , Kazuro Hirahara 1

1 京都大学大学院理学研究科, 2 京都大学防災研究所地震防災研究部門

1) はじめに

最近、2 観測点での雑微動の相互相関をとることにより2 点間のグリーン関数を得る地震波干渉法により、地震波速度構造およびその時間変化の推定が行われている。Rivet et al(2010) はメキシコの Guerrero で発生した2006 年スロースリップイベントの前後で最大で0.3 %程度の表面波伝播速度の遅れを報告している。我々は、地震波干渉法を用いて2009 年 2010 年豊後水道スロースリップに伴う地震波速度構造変化の検出を試みた。

2) データおよび解析

2009 年 1 月~2010 年 6 月の期間の四国における Hi-net 観測点 2 8 点で得られた上下動成分データを用いた。0.1-0.5Hz のバンドパスをかけ、Bensen et al.(2007) による標準化を行い、まず、各観測点間における相互相関関数 (CCF) を 1 日間スタックしてデータとした。各観測点ペアで 1 日毎の CCF の形そのものは似ているが振幅に大きな差があるため、更に 1 か月分のデータをスタックして比較した。また、全ての観測点ペアの CCF を全期間スタックし、距離順に並べた ところ、この地域ではおよそ 2.5km/s の群速度でレーリー波が伝播しているのが見て取れた。従って、各観測点ペアでの 全期間スタック CCF と 1 カ月スタック CCF のこのフェイズ部分の相互相関をとって、1 カ月スタック CCF に現れるこのフェイズの到達時刻の時間変化を調べた。

3)解析結果と考察

例えば、四国西部の2観測点(N.OOTH - N.MISH)でのCCFは、比較的安定しているが、この組み合わせでもCCFに時間軸に対して非対称性が現れ、12 - 2月頃にかけて正負入れ替わった向きにレーリー波が卓越してくる。要因としては用いたノイズソース分布が一様でなく季節変化しているためと思われる。次に同様の作業を西四国の全観測点と東四国の一部の観測点で行ったところ、上記の季節変化が顕著に見られたのは西四国と東四国を結ぶ東西基線観測点ペアで、夏季と冬季で平均的な到達時刻で約1%の違いが出た。西四国の観測点を基点にしたときに冬季は到達時刻が遅れる。この現象は南北基線観測点ペアで比較すると見られなかった。また南北基線観測点ペアの中で、2010年の1月ごろに0.3 - 0.5%程度到達時刻が急速に遅れる観測点ペアがいくつか見られた。これらの観測点ペアのパスは、2009年から2010年にかけての豊後水道スロースリップの動きがあった地域をサンプルしており、時間変化量も先行研究と同程度である。従って、更なる時間変化の詳細の検討を要し、また季節変動との分離や解析する周波数を変える必要性とか問題は残されているが、目的とするスロースリップによる地震波速度変化を捉えている可能性がある。

講演では、九州の大分・宮崎県の Hi-net 観測点データも含め、豊後水道を横断し、スロースリップ震源域を直接サンプルするパスを含む解析結果の報告を行う予定である。

最後にこの研究のデータを Hi-net から提供いただいたことを記すとともに、提供していただいた方々にお礼申し上げる。

キーワード: 地震波干渉法, 雑微動, 相互相関関数, 豊後水道スロースリップイベント

Keywords: Seismic interferometry, ambient noise, cross-correlation, Bungo-Channel slow slip event

¹Graduate School of Sciences, Kyoto Unive, ²DPRI, Kyoto University