Trigger and process of the end-Permian mass extinction

KAIHO, Kunio1*, KOGA Seizi2, ITO Kosuke1, OBA Masahiro1, GORJAN Paul3, TAKAHASHI Satoshi1, CHEN Zhong-Qiang4, TONG Jinnan4, YAMAKITA Satoshi5

1Tohoku University, 2National Institute of Advanced Industrial Science and Technology, 3Washington University, 4China University of Geosciences, 5Miyazaki University

The largest mass extinction of animals and plants in both the ocean and on land occurred at the end of the Permian, largely coinciding with the largest flood basalt volcanism event in Siberia. Our depth-transect data show that euxinia frequently developed below 100-m water depth in the Changhsingian, followed by anoxia or dysoxia at 200- to 40-m water depths during the extinction. These organic and isotopic geochemical results imply that there was an accumulation of hydrogen sulphide in intermediate and deep waters followed by oxidation of hydrogen sulphide that led to dissolved oxygen consumption, surface-water anoxia, and acidification, resulting in the end-Permian mass extinction in the seas. The possibility of atmospheric ozone collapse due to coincident massive release of CH4 from the Siberian igneous province and H2S from the euxinic ocean to the atmosphere is not likely. Our calculations indicate that a massive release of CH4 and H2S to the atmosphere would cause an approximately 10% decrease in atmospheric O2 levels but not significantly alter ozone levels. The slight decrease in atmospheric O2 levels may also have contributed to the extinction event. However, the end-Permian mass extinction of terrestrial animals was most likely significant global warming and an increase in CO2 levels probably induced by the Siberian volcanism, not an increase in UV radiation levels and a decrease in atmospheric O2 levels.

Keywords: Permian, mass extinction, CH4, H2S, ozone, O2