Japan Geoscience Union Meeting 2012

(May 20-25 2012 at Makuhari, Chiba, Japan)

©2012. Japan Geoscience Union. All Rights Reserved.

ACC31-09

Time:May 23 11:30-11:45

Verification of crystal size and water stable isotopes for climatic proxies in Belukha ice core, Siberian Altai

OKAMOTO, Sachiko^{1*}, FUJITA Koji¹, NARITA Hideki², AIZEN Vladimir A.³, SERA Syuntaro⁴, TAKEUCHI Nozomu⁴, UETAKE Jun⁵, NAKAZAWA Fumio⁵, MIYAKE Takayuki⁶, NIKITIN Stanislav A.⁷, NAKAWO Masayoshi⁸

¹Nagoya University, ²Network of Snow and Ice Specialists, ³University of Idaho, ⁴Chiba University, ⁵National Institute of Polar Research, ⁶The University of Shiga Prefecture, ⁷Tomsk State University, ⁸National Institutes for the Humanities

The seasonal change of crystal size is utilized for deriving age scale for Belukha ice core, Siberian Altai. Consequently, the upper 154.27 m of the ice core cover the period from 1210 to 2003. Annual median of initial crystal area removed impurities effect (effective crystal area) estimated by the empirical formulas shows significant correlations with air temperature estimated Barnaul temperature. The periods of small effective crystal area agree with the periods of solar activity Minimums. The 5?year averaged oxygen isotope ratio, solar modulation, accumulation and d?excess shows significant correlations. These relationships suggest that oxygen isotope ratio in Belukha ice core represents summer precipitation changes from the Atlantic Ocean and the irradiated solar reduce precipitation. The variation of d?excess means the ratio of precipitation from western recycled water vapor.

Keywords: ice core, crystal size, water stable isotopes, d-excess