Japan Geoscience Union Meeting 2012

(May 20-25 2012 at Makuhari, Chiba, Japan)

©2012. Japan Geoscience Union. All Rights Reserved.

AGE04-P05

会場:コンベンションホール

ガス・熱輸送係数に土壌水分ヒステリシスが及ぼす影響 Effects of soil-water retention hysteresis on gas and heat transport parameters

笹沼 公美^{1*}, 濱本 昌一郎¹, 川本 健¹, 小松 登志子¹, 榊 利博² SASANUMA, Kumi^{1*}, HAMAMOTO, Shoichiro¹, KAWAMOTO, Ken¹, KOMATSU, Toshiko¹, Sakaki Toshihiro²

¹ 埼玉大学大学院, ²National Cooperative for the Disposal of Radioactive Waste

¹Graduate School of Science and Engineering, Saitama University, ²National Cooperative for the Disposal of Radioactive Waste

Knowledge of soil-gas and heat transport parameters is essential for understanding and simulating behaviors of greenhouse/toxic gases and changes in soil temperature at landfill sites. Degree of water-saturation at different water potentials (i.e., water retention characteristic) highly affects these gas and heat transport parameters. In this study, the effects of water retention hysteresis on the soil-gas diffusion coefficient (D_p), air permeability (k_a), and thermal conductivity (K_T) were investigated. Different sand particle size fractions with different particle shapes were used for measuring gas and heat transport parameters. The soil-water retention hysteresis highly affected the gas transport parameters, showing higher D_p and k_a values for the wetting processes than those for drying processes at the same air content. This suggests that the more continuous air-filled pore-networks in the wetting processes enhanced diffusive and advective gas transport. As compared to gas transport parameters, the effect of soil water retention hysteresis on the K_T was insignificant for all sand materials.

キーワード: 土壌水分ヒステリシス, ガス輸送係数, 熱輸送係数

Keywords: soil-water retention hysteresis, gas transport parameter, heat transport parameter