Temperature and salinity estimates in the Japan Sea during the past 18 kyr

KODAIRA, Tomohiro1,*, HORIKAWA Keiji1, IKEHARA Ken2, MURAYAMA Masahumi3, ZHANG Jing1

1University of Toyama, 2National Institute of Advanced Industrial Science and Technology, 3Center for Advanced Marine Core Research, Kochi University

The Japan Sea has shallow 4 straits (≤130 m) that connect to the Pacific Ocean to exchange seawater, and thus sea-level lowstand (ca.-120 m) during the LGM might had limited vigorous seawater exchange between the Japan Sea and the Pacific through the straits. Only through the narrow and shallow Tsushima strait, the glacial Huang He River supplied fresh water to the semi-closed Japan Sea, forming low-saline surface conditions at the time (e.g., Oba and Murayama, 1995). This low-saline surface condition during the LGM was relieved by intrusion of Oyashio Current into the Japan Sea through the Tsugaru strait from 18 ka (Oba and Murayama, 1995). Although Ishiwatari et al. (2001) have tried to reconstruct sea-surface temperatures (SSTs) during the past 36 ka based on alkenone unsaturation ratio, the low-saline conditions during the early deglacial periods make SST estimates from alkenone uncertain (Harada et al., 2008; Fujine et al., 2006). Here, we present planktic foraminifera Mg/Ca-derived SST and Ba/Ca ratios, together with benthic and planktic foraminifera d18O from a sediment core in the Japan Sea.

The studied sediment core (YK10-7-PC09) was taken from 738 m water depth off Niigata. The thick lamina layer was observed in a section from 420 cm to 750 cm core depth, which corresponds to the sediments during Heinrich 1 and glacial periods and we have used the sediment samples above 450 cm core depth. The age model for the core was based on 7 AMS 14C data of planktic foraminifera. We have used Marin09 and dR of 0+/−100yr to convert the conventional 14C ages to the calibrated ages. d13C and d18O of benthic (Uvigerina spp) and planktic foraminifera (N.incompta, N.pachyderma(s), G.bulloides) were measured by MAT 253 (CMCR, Kochi University), whereas trace metal/Ca ratio of planktic foraminifera were measured by Thermo Finigan Element II (University of Toyama). Precision (1sigma) of Mg/Ca, Mn/Ca, and Ba/Ca ratios obtained by the SF-ICP-MS in our laboratory was 0.97%, 0.49%, and 1.63%, respectively.

The d18O records from planktic foraminifera were almost same as the records from L-3 core (Oba and Murayama, 1995), and one of striking features is a significant increase of d18O values from 0.6 permil to 3.4 permil during the early deglaciation (18-15 ka). The Mg/Ca-derived SSTs (from G.bulloides) showed a slight increase from 5 to 8°C during 18-7 ka; SSTs did not change significantly during 18-15 ka and warmed 3°C during the B/A period. Importantly, the SST evolution in the Japan Sea exhibited a close similarity with the SST variation reconstructed off Tokachi under the influence of Oyashio Current (Sagawa and Ikehara, 2008), with 1°C offset, corroborating the previous result that the Japan Sea was influenced by Oyashio Current at the time. Using paired d18O and Mg/Ca-derived SST, we have attempted to estimate d18Osw (Oba et al., 1980) and revealed that about 4 permil increase in regional d18Osw took place at 18 to 15 ka. Although d18Osw values are linearly related to salinity, the slope and intercept of d18Osw-salinity relation can be changed by evaporation and precipitation fluxes and d18O values of fresh water, resulting in different d18Osw-salinity equations in various basins. If the d18Osw-salinity relation in the modern Okhotsk Sea (d18Osw = 0.3195 x Salinity - 13.561; Yamamoto et al., 2001) was applied to the early deglacial periods in the Japan Sea, we can roughly estimate paleo-salinity; 24 psu at 18 ka and 33 psu at 15 ka. Given that the source of fresh water for the glacial Japan Sea was the Huang He River, heavier d18O values as an intercept might be appropriate. If so, estimated paleo-salinity at 18 ka will be less than 20 psu. Although the exact estimate of paleo-salinity is quite difficult, the fact that Ba/Ca ratios of planktic foraminifera exhibit a similar trend as the regional d18Osw and very high values up to 2 micromol/mol at 18 ka corroborates that the Japan Sea was severe less-saline surface conditions during the LGM. Keywords: Japan Sea, Mg/Ca, Ba/Ca, d18O