マイクロ蛍光X線分析とX線吸収微細構造からみるシャコガイ殻の硫黄濃度変動と化学状態
Element profile and chemical environment of sulfur in clam shell: insights from micro-XRF and XANES

吉村 寿経1*，為則 雄祐2，鈴木 淳3，中島 礼4，岩崎 望4，長谷川 浩5，川幡 穂高6
YOSHIMURA, Toshihiro1*, TAMENORI, Yusuke2, SUZUKI, Atsushi3, NAKASHIMA, Rei4, Nozomu Iwasaki4, Hiroshi Hasegawa5, Hodaka Kawahata6

1 東京大学・新領域創成科学研究科, 2 高輝度光科学研究センター, 3 産業技術総合研究所・地質情報研究部門, 4 立正大学・地球環境科学部, 5 金沢大学・理工研究域, 6 東京大学・大気海洋研究所
Graduate School of Frontier Sciences, The University of Tokyo, 2 Japan Synchrotron Radiation Research Institute, 3 Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, 4 Department of Environment Systems, Rissho University, 5 Institute of Science and Engineering, Kanazawa University, 6 Atmosphere and Ocean Research Institute, The University of Tokyo

Element profiles of sulfur and strontium in the inner layer of a clam shell (Hippopus hippopus) were investigated by means of micro X-ray fluorescence, and sulfur K-edge X-ray absorption near-edge structure (XANES) were used to evaluate the local environment of sulfur in aragonitic and calcitic bivalve shells. The spectra of S K-edge XANES collected from bivalve shells and S-bearing organic and inorganic reference materials indicated that inorganic sulfate was present in calcitic bivalve shells. However, XANES results did not permit us to discriminate between organic and inorganic sulfate in aragonitic shells. Strontium fluctuations and thin section observations suggested that Sr was incorporated into the shells at high growth rates during warm seasons. The first-order fluctuations of sulfur in the inner shell layer showed clear annual fluctuations, with sulfur concentrations being lower during periods of faster growth. Bivalve shells consist of well-crystallized CaCO₃ and amorphous CaCO₃ containing organic matter, and the proportion of crystalline CaCO₃ increases during the high growth season. Our results suggest that trace sulfur profiles in aragonitic shells could be the result of cyclic changes of shell crystallization related to bivalve physiology and environmental factors.

キーワード: 硫黄, マイクロ蛍光X線分析, 放射光, X線吸収微細構造, ストロンチウム
Keywords: Sulfur, micro-XRF, Synchrotron radiation, XANES, Strontium