Sulfur cycling constrained from speciation and isotope analyses of 3.2 Ga black shale recovered by DXCL-DP

KOBA YASHI, Yuri1*, YAMAGUCHI, Kosei E.2, SAKAMOTO, Rio3, NARAOKA, Hiroshi3, KIYOKAWA, Shoichi3, IKEHARA, Minoru4, ITO, Takashi5

1Toho University, 2Toho University, NASA Astrobiology Institute, 3Kyushu University, 4Kochi University, 5Ibaraki University

Before the inferred GOE (Great Oxidation Event; Holland 1994) at 2.3-2.4 Ga ago, the surface environment of the Earth could have been, at least locally and/or temporally, slightly oxic as old as 3.2 Ga ago. Such evidence come from a variety of geochemical analysis using the least-metamorphosed 3.2 Ga old drillcores recovered by DXCL-DP (Dixon Island-Cleaverville Drilling Project; Yamaguchi et al., 2009) in northwestern Pilbara region, Western Australia. It includes activity of photosynthetic (oxygen-producing?) organisms (Hosoi et al., 2011), oxidative (nitrate-involving) nitrogen biogeochemical cycling (Yamada et al., 2011) and activity of sulfate-reducing bacteria (Sakamoto et al., 2011).

During biogeochemical cycling of sulfur in sedimentary environment, S-bearing species undergo a variety of biogeochemical reactions and preserved in the sediments as acid-volatile sulfur (AVS), pyrite (FeS2), sulfate, organic sulfur (Sorg) and elemental sulfur (S0). These species, and their S isotope compositions vary depending on various factors such as the redox state of the ocean and microbial activity involved. In this study, we performed S speciation and isotope analyses of the 3.2 Ga old DXCL-DP black shale, in an attempt to constrain the sulfur cycle in the coeval ocean.

Average S contents for each phase was total S = 2.56 wt.%, AVS = 0.02 wt.%, pyrite = 1.61 wt.%, and sulfate = 0.57 wt.%. Pyrite is the most abundant phase. A positive correlation between the pyrite S and organic C, with a slope of 2.2 for the regression line, suggests that the Black Sea type of depositional environment; sulfate-reducing bacteria was active in anaerobic, semi-closed deep water with a limited supply of sulfate overlain by aerobic surface water. The origin of sulfate could have been the oxidation of pyrite on the continents or the oxidation of reduced S-species emanated from submarine hydrothermal activity. Such possibilities can be examined from S isotopic composition of S-bearing species in the samples.

Keywords: Sulfur, speciation, isotope