Japan Geoscience Union Meeting 2012

(May 20-25 2012 at Makuhari, Chiba, Japan)

©2012. Japan Geoscience Union. All Rights Reserved.

HRE27-P06

Time:May 20 15:30-17:00

Analysis and Application of Water-Rock-CO2 Reaction Using Basalt

KATAYAMA, Tomohiro^{1*}, SHIKAZONO, Naotatsu¹, TAKAYA, Yutaro², KATO, Yasuhiro²

¹Graduate School, Keio University, ²Graduate School, University of Tokyo

Carbon dioxide underground sequestration is able to reduce enormous quantities of CO_2 emission. It has been attracted and researched.

But, there are several unclear mechanism of CO_2 behavior in underground. Therefore, it is difficult to estimate exact time for CO_2 storage.

For estimating time of CO₂ sequestration, we consider water-rock-CO₂ reaction.

Water-rock-CO₂ reaction attract attention in many parts of science. It consists of three following reactions:

 $CO_2 + H_2O = H_2CO_3 = H^+ + HCO_3^- (1)$

 $MSiO_3 + 2CO_2 + H_2O = M^{2+} + H_4SiO_4 + 2HCO_3^{-} (2)$

 $M^{2+} + 2HCO_3^- = MCO_3 + CO_2 + H_2O(3)$

where M is bivalent metal ion.

There are two steps. First, CO_2 dissolves in the water by (1) or mineral and water react CO_2 by (2). Next, bivalent metal ion and hydrogen carbonate ion generate and carbonate minerals (MCO₃) precipitate by (3).

If CO_2 is fixed as MCO_3 by (3), it is very safety. But, this reaction mechanism is very complex. And calculation method of dissolution rate constant is not clear. Furthermore, water-rock- CO_2 reaction is useful for estimating ancient CO_2 concentration and considering carbon flux in the global circulation, too.

In this study, the purposes are

1)To consider dissolution mechanism in water-rock-CO $_2$ reaction.

2)To compare many calculation method of dissolution rate constant.

3)To estimate time of CO_2 storage by precipitation of carbonate minerals.

- We used basalt samples for the dissolution experiment. Because,
- 1) It contains metals which can become divalent cation.
- 2) It is widely distributed in the world.
- 3) Oceanic ridge is almost composed of basalt.

The basalt samples ware obtained nearby Mt. Fuji.

Keywords: Basalt, Water-Rock Reaction, CO2 Sequestration