Japan Geoscience Union Meeting 2012

(May 20-25 2012 at Makuhari, Chiba, Japan)

©2012. Japan Geoscience Union. All Rights Reserved.

MIS27-P22 会場:コンベンションホール

IODP第325次航海グレートバリアリーフ陸棚斜面掘削コアに産出する大型底生有孔 虫化石群集解析 Large benthic foraminiferal assemblages from shelf slope cores of the Great Barrier Reef: IODP EXP. 325

柳岡 範子 ¹*, 仲田 潮子 ², 藤田 和彦 ³, 菅 浩伸 ⁴, 横山 祐典 ⁵, IODP Exp. 325 Scientists⁶ YAGIOKA, Noriko¹*, NAKADA, Choko², FUJITA, Kazuhiko³, KAN, Hironobu⁴, YOKOYAMA, Yusuke⁵, IODP Exp. 325 Scientists⁶

¹ 琉球大学大学院理工学研究科,² 琉球大学理学部,³ 琉球大学理学部物質地球科学科,⁴ 岡山大学教育学研究科,⁵ 東京大学 大気海洋研究所 海洋底科学部門 / 地球表層圏変動研究センター,⁶IODP

¹Graduate School of Engineering and Science, University of the Ryukyus, ²Faculty of Science, University of the Ryukyus, ³Department of Physics and Earth Sciences, University of the Ryukyus, ⁴Graduate School of Education, Okayama University, ⁵Atmosphere and Ocean Research Institute, University of Tokyo, ⁶IODP

The Integrated Ocean Drilling Program (IODP) Expedition 325 was conducted in 2010 on tectonically stable continental shelf slopes of the Great Barrier Reef (GBR) to understand sea-level changes, paleoceanographic changes and the history of coral-reef developments since the Last Glacial Maximum. A total of 34 boreholes in four transects were cored in depths ranging from 42 to 167 meters below sea level. Large benthic foraminifers are unique tools to reconstruct the past environmental histories (e.g., Fujita et al., 2010) for reef systems including paleo-water depths, and hence we aim to employ this method for GBR samples to reconstruct sea-level changes and reef development processes. Unconsolidated sediment samples from cores taken in three transects (HYD_01C, HYD_02A and NOG_01B) were used for grain-size and foraminiferal analyses, and multivariate analyses of foraminiferal assemblages were performed. Operculina spp. was common in a gravel fraction; it was particularly abundant in muddy sediments in the lower part of cores from deep shelf slopes. A total of 25 taxa of large benthic foraminifers were identified in a coarse sand fraction. Four foraminiferal assemblages (A, B, C, and D) were delineated by Q-mode cluster analysis and they correspond to distinct sedimentary environments; namely back reefs (assemblage A), fore-reef slopes with either high energy (assemblage B) or low energy condition (assemblage C), and deep shelf slopes (assemblage D). The assemblage A which is dominated by Baculogypsina sp. and Calcarina spp. would be a key to reconstruct past sea levels. The current study is indicative of the potential for reconstructions of paleo-sea-levels using large benthic foraminiferal assemblages.