Depth profile analysis of light elements using J-PARC MUSE

TERADA, Kentaro1,*, Takahito Osawa2, TACHIBANA, Shogo3, UESUGI, Masayuki4, Kazuhiko Ninomiya2, Yasuhiro Miyake5, Kenya Kubo6, Naritoshi Kawamura5, Wataru Higemoto2, TSUCHIYAMA, Akira7, EBIHARA, Mitsuru8

1Osaka University, 2Japan Atomic Energy Agency, 3University of Tokyo, 4Japan Aerospace Exploration Agency, 5High Energy Accelerator Research Organization, 6International Christian University, 7Kyoto University, 8Tokyo Metropolitan University

Recently, the intense pulsed muon source, J-PARC/MUSE has been constructed (Miyake et al. 2009), providing the potential of the 3-D elemental map from the near surface to the interior of the planetary materials.

Here, we report on the depth profile analysis of the four layered sample that consists of SiO\textsubscript{2}, C (graphite), BN (boron nitride) and SiO\textsubscript{2} changing the Muon's momentum from 37.5MeV to 57.5MeV/c. Muonic X-ray from B, C, N and O are successfully detected through SiO\textsubscript{2} plate of which thickness is about 1 mm.

Keywords: Muon, J-PARC, Characteristic X-ray, Non-destructive measurement, depth profile analysis