Japan Geoscience Union Meeting 2012

(May 20-25 2012 at Makuhari, Chiba, Japan)

©2012. Japan Geoscience Union. All Rights Reserved.

MTT37-09

Room:101B

Time:May 21 11:24-11:39

Quantifying nitrate dynamics in hydrosphere using the natural stable isotopes as tracers

TSUNOGAI, Urumu^{1*}, Yukie Tadenuma¹, OHYAMA, Takuya¹, KOMATSU, Daisuke¹, NAKAGAWA, Fumiko¹, UMEDA, Makoto², Atsushi Tanaka³

¹Earth and Planetary System Science, Faculty of Science, Hokkaido University, ²Graduate School of Engineering, Tohoku University, ³National Institute for Environmental Studies

In most studies that have been conducted to date, the gross uptake rate of nitrate has been estimated by incubation experiments using ¹⁵N tracer techniques. In this conventional approach, ¹⁵N labeled NO_3^- is added into bottles or mesocosms that simulate in situ conditions, which leads to the production of particulate organic-¹⁵N (PO¹⁵N) through assimilation over a known incubation period of several hours to several days. This PO¹⁵N is then gathered and quantified by mass spectrometry. However, these experimental procedures are generally costly, complicated, and time consuming, especially those that employ mesocosms. Furthermore, the ¹⁵N tracer method has several problems with determining accurate nitrate uptake rates. For example, the usual ¹⁵N tracer method does not include assimilated nitrogen released to dissolved organic-¹⁵N (DO¹⁵N) during incubation within the estimated uptake rates, which results in the rates being underestimated. Additionally, incubation itself could also result in the production of artifacts by changing the physical/chemical environments. Finally, it is difficult to simulate nitrate uptake by periphyton or microbes on the lake floor through typical incubation in bottles.

In this study, we estimated the gross nitrate uptake rate in several lakes in Japan using average $Delta^{17}$ O values of NO₃⁻ ($Delta^{17}$ O method) dissolved in each studied lake. Besides, we compared the results with those estimated using the traditional ¹⁵N tracer method.

Based on the observation, we concluded that the *Delta*¹⁷O method overcomes the aforementioned problems inherent in the conventional ¹⁵N-labelled tracer methods. Accordingly, the *Delta*¹⁷O method can be an alternative to standard techniques for the determination of accurate gross nitrate uptake rates in hydrosphere that contain detectable quantities of atmospheric nitrate within the total nitrate.

Keywords: nitrate, atmospheric deposition, assimilation, nitrification, nitrogen cycle, triple oxygen isotopes