Japan Geoscience Union Meeting 2012

(May 20-25 2012 at Makuhari, Chiba, Japan)

©2012. Japan Geoscience Union. All Rights Reserved.

PEM08-05

会場:301B

時間:5月21日14:55-15:10

Simulated longitudinal variations in the E-region plasma density induced by non-migrating tides

Simulated longitudinal variations in the E-region plasma density induced by non-migrating tides

Zhipeng Ren^{1*}, Weixing Wan¹, Libo Liu¹, Jiangang Xiong¹ REN, Zhipeng^{1*}, Weixing Wan¹, LIU, Libo¹, Jiangang Xiong¹

Based on the GCITEM-IGGCAS model and tides from TIMED/SABER observations, the longitudinal variations of the E-region plasma densities, which is induced by non-migrating tides, are investigated. We simulated the intra-annual variation of the E-region plasma density, and found that equinoctial E-region plasma density shows an obvious wavenumber-4 longitudinal structure both in Equinox and in June Solstice, and a wavenumber-3 longitudinal structure in December Solstice. Our simulations suggest that DE3 tide can drive the wavenumber-4 structure in E-region plasma density, and DE2 tide can drive the wavenumber-3 structure. O2⁺ controls the longitudinal variations of total ions density at lower E-region, and NO⁺ mainly controls that at higher E-region. We also noticed that the longitudinal variations of O2⁺ and of NO⁺ show obvious phase differences.

 \pm – \neg – \vdash : Longitudinal variation, E-region plasma density, non-migrating tides Keywords: Longitudinal variation, E-region plasma density, non-migrating tides

¹Institute of Geology and Geophysics, CAS

¹Institute of Geology and Geophysics, CAS