Asia VLF Observation Network (AVON) system for monitoring the D- and lower E-region ionosphere

OHYA, Hiroyo1, TSUCHIYA, Fuminori2, YAMASHITA, Kozo3, TAKAHASHI, Yukihiro4, SHIOKAWA, Kazuo5, MIYOSHI, Yoshizumi5, NAKATA, Hiroyuki1

1Graduate School of Engineering, Chiba University, 2Graduate School of Science, Tohoku University, 3Department of Electrical Engineering, Salesian Polytechnic, 4Graduate School of Science, Hokkaido University, 5Solar-Terrestrial Environment Laboratory, Nagoya University

We introduce Asia VLF Observation Network (AVON) system. The observation targets of the AVON are the D- and lower E-region ionosphere, lightning activities, and ionospheric disturbances associated with lightning in Southeast Asia. In this study, we show the results of the D- and lower E-region ionosphere. The observation system is installed at three sites: Tainan site (23.08N, 120.12E) in Taiwan, Saraburi site (14.53N, 101.03E) in Thailand, and Pontianak site (0.00N, 109.37E) in Indonesia. In addition, we have a plan to install the observation system at Laoag in Philippine and Hanoi in Vietnam in 2012. At each site, we use a dipole antenna for the electric field measurements and an orthogonal loop antenna for the magnetic field measurements. At Tainan, Saraburi, and Pontianak sites, LF transmitter signals are observed with a monopole antenna. With a set of orthogonal loop and dipole antennas, tweek atmospherics (0.1 - 10.0 kHz) and broadband lightning atmospherics (1.0-40.0 kHz) are obtained. Analyzing the VLF/LF data obtained by AVON, we estimate the reflection heights of each signal. The reflection height corresponds to variations in electron density in the D- and lower E-region ionosphere in Southeast Asia. This network system is utilized in cooperation with other ground-based and satellite-based observation projects to investigate energetic-particle precipitation effects on low-latitude ionosphere. In the presentation, we introduce the AVON system and show the results of a magnetic storm of 2-12 May 2010, total solar eclipse of 22 July, 2009, and long recovery events of LF transmitter signals.