We have investigated force balance associated with ion upflow, by using the EISCAT UHF radar and heating facility in Tromsø, northern Norway (69.6 deg N, 19.2 deg E). The heating facility enables us to induce not only enhanced electron temperature but also upward flowing ions in the F-region/topside ionosphere. The heater-induced artificial ion upflow is one of the most suitable events to estimate force balance of ionospheric ions quantitatively and also understand generation mechanisms of ion upflow. Furthermore, the heater-induced ionospheric data are potentially usable to estimate height profiles of ion-neutral collision frequency, neutral density, and horizontal neutral wind in the F-region/topside ionosphere.

We conducted the heater and radar observations as an EISCAT special program by UK and Japan between 17 and 20 November, 2011, and successfully obtained data including artificial ionospheric ion upflow. The UHF radar and heater beams were both pointed into the magnetic zenith, and pump cycle of the heater was 16 min on, and 12 min off. During heater on period electron temperature sometimes increased up to about 4000 K and upward ion velocity reached about 500 m/s at an altitude of 500 km.

In this paper, we show the detailed results of the heating experiment, and discuss quantitative force balance associated with ion upflow.

Keywords: polar ionosphere, ion upflow, ion outflow, EISCAT

電離圈加熱装置を用いて発生した電離圏イオン上昇流
Heater-induced artificial ionospheric ion upflow

小川 泰信1*, Mike Kosch3, Mike Rietveld4, Carl Bryers3, 野澤 悟徳2, 藤井 良一2
OGAWA, Yasunobu1*, Mike Kosch3, Mike Rietveld4, Carl Bryers3, NOZAWA, Satonori2, FUJII, Ryoichi2

1国立極地研究所, 2名古屋大学太陽地球環境研究所, 3Lancaster University, 4EISCAT トロムソサイト

We have investigated force balance associated with ion upflow, by using the EISCAT UHF radar and heating facility in Tromsø, northern Norway (69.6 deg N, 19.2 deg E). The heating facility enables us to induce not only enhanced electron temperature but also upward flowing ions in the F-region/topside ionosphere. The heater-induced artificial ion upflow is one of the most suitable events to estimate force balance of ionospheric ions quantitatively and also understand generation mechanisms of ion upflow. Furthermore, the heater-induced ionospheric data are potentially usable to estimate height profiles of ion-neutral collision frequency, neutral density, and horizontal neutral wind in the F-region/topside ionosphere.

We conducted the heater and radar observations as an EISCAT special program by UK and Japan between 17 and 20 November, 2011, and successfully obtained data including artificial ionospheric ion upflow. The UHF radar and heater beams were both pointed into the magnetic zenith, and pump cycle of the heater was 16 min on, and 12 min off. During heater on period electron temperature sometimes increased up to about 4000 K and upward ion velocity reached about 500 m/s at an altitude of 500 km.

In this paper, we show the detailed results of the heating experiment, and discuss quantitative force balance associated with ion upflow.

キーワード: 極域電離圏, イオン上昇流, イオン流出, EISCAT
Keywords: polar ionosphere, ion upflow, ion outflow, EISCAT