Japan Geoscience Union Meeting 2012

(May 20-25 2012 at Makuhari, Chiba, Japan)

©2012. Japan Geoscience Union. All Rights Reserved.

PPS24-04

会場:106

時間:5月25日14:30-14:45

彗星コマの水分子の核スピン温度は彗星氷の生成温度を反映しているか? Does nuclear-spin temperature of water molecules in comet coma reflect the formation temperature of the cometary ice?

羽馬 哲也¹*, 渡部 直樹¹, 香内 晃¹ HAMA, Tetsuya¹*, WATANABE, Naoki¹, KOUCHI, Akira¹

1北海道大学 低温科学研究所

¹Institute of Low Temperature Science, Hokkaido University

The nuclear-spin temperature (T_{spin}) is derived from the ortho-to-para ratio (OPR) of molecules such as H₂ or H₂O, which contains two protons with spin of 1/2; thus, its total spin state can be either 0 (singlet, para) or 1 (triplet, ortho). In the case of H₂O, the OPR is equal to 3 in statistical equilibrium, which is achieved at temperatures above ~50 K.

 T_{spin} of interstellar H₂O molecules has been observed, because they are suggested to be indicators of these molecules' physical and chemical histories. In cometary coma, T_{spin} of H₂O has been derived to be typically ~30 K. Recently, it was found that there has been a wide range of the observed values of T_{spin} of H₂O from 13.5 K to ~50 K in interstellar space.

Since nuclear-spin conversion is unlikely to occur for isolated molecules in the gas phase. These values have been implicated as the temperature of cold grains at molecular condensation or formation in a molecular cloud, or in the solar nebula, for example. However, the real meaning of the observed T_{spin} remains a topic of continuing debate. For a proper interpretation of T_{spin} of molecules observed in interstellar space or cometary coma, the correlation between T_{spin} and temperatures of ice at condensation, formation, and desorption needs to be investigated. Even T_{spin} of thermally desorbed H₂O from water ice condensed or formed at low temperature is yet to be experimentally measured.

The present study measured the T_{spin} of H₂O thermally desorbed from pure amorphous solid water (ASW) deposited at 8 K by employing a combination of temperature programmed desorption and resonance-enhanced multiphoton ionization (REMPI) methods. We also produced ASW at 8 K by photolysis of a CH₄/O₂ mixture (photoproduced ASW) for the idea that T_{spin} of H₂O molecules formed at a low temperature relates to the formation environment.

As a result, thermally desorbed H₂O molecules at 150 K from all ice samples prepared at 8 K showed T_{spin} almost at the statistical high-temperature limit (>~30 K). T_{spin} of desorbed H₂O from vapor-deposited pure ASW is almost at the statistical high-temperature limit (>~30 K), while its value was almost the same after leaving it for 9 days at 8 K. These results suggest that the T_{spin} of gaseous H₂O molecules thermally desorbed from ice does not necessarily reflect the surface temperature at which H₂O molecules condensed or formed. We discuss the possibility of nuclear-spin conversion of H₂O in water ice.

キーワード:彗星,核スピン温度,オルソパラ比,星間分子,室内実験

Keywords: comet, nuclear-spin temperature, ortho-to-para ratio, interstellar molecules, laboratory experiment