SELENE-2 月電磁探査装置 (LEMS) によって観測される月の電磁応答
Lunar electromagnetic response to be observed by Lunar ElectroMagnetic Sounder (LEMS) in the SELENE-2 mission

松島 政貴 1*, 清水 久芳 2, 藤 浩明 3, 吉村 令恵 4, 高橋 太 1, 綱川 秀夫 1, 渋谷 秀敏 5, 松岡 彰子 6, 小田 啓邦 7, 飯島 祐一 6, 小川 和則 6, 田中 智 6
MATSUSHIMA, Masaki1*, SHIMIZU, Hisayoshi2, TOH, Hiroaki3, YOSHIMURA, Ryokei4, TAKAHASHI, Futoshi5, TSUNAKAWA, Hideo3, SHIBUYA, Hidetoshi5, MATSUOKA, Ayako6, ODA, Hirokuni7, IJIMA Yuichi6, OGAWA, Kazunori6, TANAKA, Satoshi6

1 東京工業大学, 2 東京大学地震研究所, 3 京都大学, 4 京都大学防災研究所, 5 熊本大学, 6 宇宙航空研究開発機構宇宙科学研究所, 7 産業技術総合研究所

The present status of lunar interior structure is a consequence of the thermal history of the Moon. Therefore information on its internal structure is a key issue to understand the lunar origin and evolution. The electrical conductivity structure, which is independent of the seismic velocity structure, is important to estimate the thermal structure in the lunar interior, since the electrical conductivity of silicates has a strong temperature dependence. Hence, we propose a lunar electromagnetic sounder (LEMS) to estimate the electrical conductivity structure of the Moon.

Temporal variations in the magnetic field of lunar external origin induce eddy currents in the lunar interior, which in turn generates the magnetic field of lunar internal origin. In the SELENE-2 mission, the inducing magnetic field is to be measured by two triaxial fluxgate magnetometers onboard a lunar orbiter, and the induced field as well as the inducing field is to be measured by two triaxial fluxgate magnetometers onboard a lunar lander. We plan to use dual magnetometer technique as mentioned above to avoid strict electromagnetic compatibility requirements like those for the Kaguya spacecraft.

Here we present a current status of the LEMS mission. We also show electromagnetic response of the Moon by assuming electrical conductivity structures of the lunar interior. It turns out that the magnetic field data as obtained in the Apollo mission are insufficient to estimate the electrical conductivity structure for the outermost few hundred kilometers of the Moon because of the low sampling frequency. Estimation of lunar electromagnetic response was attempted by using the magnetic field data obtained by the lunar magnetometer (LMAG) onboard the Kaguya spacecraft. Although the magnetic field data at higher frequencies are available, it is difficult to estimate electromagnetic response only by the lunar orbiter. Thus it is very significant to measure the magnetic field by both a lunar lander and a lunar orbiter in the SELENE-2 mission.

Keywords: electromagnetic sounding, lunar interior, SELENE-2