Japan Geoscience Union Meeting 2012

(May 20-25 2012 at Makuhari, Chiba, Japan)

©2012. Japan Geoscience Union. All Rights Reserved.

SCG69-P01

Room:Convention Hall

Time:May 24 17:15-18:30

IONOSPHERE-ATMOSPHERE-OCEAN-CRYOSPHERE-GEOSPHERE INTERACTION FROM MICROSEISMS AND MICROBAROMS IN ANTARCTICA

KANAO, Masaki^{1*}, YAMAMOTO, Masa-yuki², ISHIHARA, Yoshiaki³, TOYOKUNI, Genti⁴

¹National Institute of Polar Research, ²Kochi University of Technology, ³National Astronomical Observatory of Japan, ⁴Graduate School of Science, Tohoku University

Several characteristic waves detected by seismographs in Antarctica are originated from physical interaction between solidearth and atmosphere - ocean - cryosphere, involving environmental changes. An infrasound sensor was planted at Syowa Station (SYO; 39E, 69S), Antarctica at the International Polar Year. Continuous data in 2008-2009 include background signals (microbaroms) with peak with few seconds of its intrinsic period. Signals with same period are recorded in broadband seismograph at SYO (microseisms). Continuous signals are identified as Double-Frequency Microseism-baroms (DFM) with peaks between 4 and 10 s in whole season. The peak amplitudes of DFM reflect the influence of winter cyclonic storms in Southern Ocean. The DFM has relatively lower amplitudes during winters, caused by sea-ice extent around the coast with decreasing oceanic loading effects. In contrast, Single-Frequency Microseism-baroms (SFM, between 12 and 30 s) are observable under storm conditions particularly in winter. On infrasound data, stationary signals are identified with harmonic over tones at a few Hz to lower most human audible band, which appear to be local effects, such as sea-ice cracking vibration. Microseism-baroms are useful proxy for characterizing ocean wave climate, and continuous monitoring by seismograph and infrasound contribute to FDSN and CTBT in southern high latitude.

Keywords: Antarctica, Microseismic Noise, Infrasound Microbaroms, ocean wave climate, earth system, physical interaction