Japan Geoscience Union Meeting 2012

(May 20-25 2012 at Makuhari, Chiba, Japan)

©2012. Japan Geoscience Union. All Rights Reserved.

SGC55-08

会場:101B

オスミウム同位体組成から見たボニナイトマグマの起源 Contribution of anciently depleted mantle and slab derived components to boninite magma genesis

仙田 量子^{1*}, 清水 健二¹, 鈴木 勝彦¹ SENDA, Ryoko^{1*}, SHIMIZU, Kenji¹, SUZUKI, Katsuhiko¹

¹ 独立行政法人海洋研究開発機構地球内部ダイナミクス領域 ¹IFREE, JAMSTEC

Boninite is a volcanic rock derived from highly depleted hydrous mantle that melted at a shallower depth with water derived from the subducted slab. Boninite occurred at the inception stage of the Izu-Bonin-Mariana arc (~48-45 Ma), and thus, may record less modified upper mantle composition with the subducted slab components. In order to improve the understanding of Os recycling in the subduction setting, Cr-spinels from boninites, Cr-spinel/magnetite mixtures from tholeiites which erupted subsequently after boninites (<45 Ma), and the whole rock of those lavas were analyzed for Os isotopes. The initial Os isotope ratios of the Cr-spinel from the boninites show highly unradiogenic to unradiogenic values (1870s/188Os(i) = 0.1179~0.1256), whereas those in the Cr-spinel/magnetite mixtures from the tholeiites (1870s/188Os(i) = 0.1270 and 0.1369) are slightly radiogenic. The initial Os isotope ratios of the whole rock samples are more radiogenic and have larger variety than those of Cr-spinel and Cr-spinel/magnetite mixtures, possibly because of contamination with the crustal materials during magma ascent or alteration after emplacement. Based on highly unradiogenic initial Os isotope ratios of the slab flux composed of altered oceanic crust (AOC) and unradiogenic components such as oceanic island basalt (OIB) volcanoclastics or very young mid-oceanic ridge basalt (MORB). In contrast, the Os isotopic compositions of Cr-spinel/magnetite mixtures of tholeites are clearly higher than those of Cr-spinels of boninites and slightly higher or similar to chondrites and primitive upper mantle (PUM) values. They were possibly affected by radiogenic slab components such as pelagic sediments and AOC with depleted mantle.

キーワード: オスミウム同位体比, ボニナイト Keywords: Os isotope ratio, boninite