Phase study of Fe-Si alloys at 3.5 GPa

SUN, Wei

ISEI, Okayama University

Introduction

Silicon has been proposed as a probable candidate to solve the density deficit between seismic observations of the Earth Core and high pressure, temperature iron [1]. Besides, Fe-Si alloy is also a quite good soft-magnetic material and its phases and properties are quite complex as Si content, pressure and temperature varying. Our study focused on the Fe-Si system at 3.5 GPa, trying to realize its phase changes and order variation as Si content and temperature changing.

Experimental

Synthetic Fe-Si alloy with different stoichiometric compounds at different temperatures (2041, 1423 and 1173K) annealing by piston-cylinder at 3.5 GPa were observed by Scanning Electron Microscopy and Electron Microprobe to determine the structures and compositions. Phase determinations were conducted by both X-Ray Powder Diffraction Spectrometry and Transmission Electron Microscopy. Lattice parameters were calculated using GSAS software from the angular position of main XRD peaks.

Local atomic orders of Fe\textsubscript{2}Si alloys were studied by 57Fe Mossbauer Spectrometry. The spectra exhibiting magnetic sextets were described by means of a discrete number of magnetic components, values of the isomer shift, quadrupolar shift and hyperfine field independently refined by Normos software.

Fe\textsubscript{3}Si containing 25wt\% 57Fe prepared for Diamond Anvil Cell experiments synthetized at 2041K, 3.5 GPa by piston-cylinder was polished to the foil (\approx 20 micros thickness, \approx 150 micros diameter). We chose 400 micros diameter diamond cell and Re gasket as sample holder. Two rubies were added to measure pressure and noble gas Neon was inflated into cell as pressure medium. In-situ magnetization order measurements in DAC were carried out by Mossbauer spectrometry at 300K with increasing 3\rightarrow 4 GPa every time by step from room pressure.

Results and Discussion

Fe-Si alloys containing >26at\% Si will decompose into DO\textsubscript{3} Fe\textsubscript{3}Si and some other phases at room pressure [2]. But in our sample of low temperature, the decomposition did not happen until the sample Fe\textsubscript{2}Si. We found the sample Fe\textsubscript{5}Si\textsubscript{2} at 1173K was still one phase while Fe\textsubscript{2}Si at 1173K decomposed into three phases. I think decomposition nearly begins at the composition of Fe\textsubscript{2}Si because of very little fraction of epsilon-FeSi and eta-Fe\textsubscript{5}Si\textsubscript{3}. The microprobe data supported this opinion because of Si contents of alpha-phase in the decomposed samples were all in the range of 29-32at\%, which is also different from the room pressure. The phenomenon may represent higher stability of alpha-phase as pressure increasing and that is why s?Fe\textsubscript{2}Si found at room pressure cannot be found at 3.5 GPa instead by DO\textsubscript{3} Fe\textsubscript{2}Si and B\textsubscript{2} phase FeSi appears in very high pressure.

Mossbauer evolutions clearly demonstrated mean hyperfine field of the Fe-Si alloy at 3.5 GPa decreased as the Si content increasing like room pressure. It is interesting that the spectrum of Fe\textsubscript{3}Si (exact composition is 24.73at\% Si content) is quite different from room pressure. The DO\textsubscript{3} Fe\textsubscript{3}Si in room pressure can be emphasized by only two Fe sites: A4 and D6 [2]. But our sample showed there were at least four sites Fe. Except the normal D6 (36\%), A4 (31\%), there are a site (17\%) between A4 and D6 and a site (16\%) of which hyperfine field is smaller than D6. More than two Fe sites mean not completely order because of replacement of Si atoms and quench at high pressure.

Because of weakening signal in DAC, we just use two Fe sites, D6 and A4 to fit the Mossbauer spectra. The mean hyperfine fields of Fe-Si alloys decrease as pressure increasing. Because of broken of diamond at 17 GPa, we have not got the nonmagnetic pressure of Fe\textsubscript{3}Si but hyperfine field still showed a good decrease trend. At >10 GPa pure Fe will become nonmagnetic but our sample Fe\textsubscript{3}Si at 17 GPa still have clear magnetic feature.

References

Keywords: Fe-Si alloy, Mossbauer, order, phase